Answer:

Explanation:
As we know that the charge per unit length of the long cylinder is given as

here we know that the electric field between two cylinders is given by

now we know that electric potential and electric field is related to each other as





Answer:
0.54454
104.00902 N
Explanation:
m = Mass of wheel = 100 kg
r = Radius = 0.52 m
t = Time taken = 6 seconds
= Final angular velocity
= Initial angular velocity
= Angular acceleration
Mass of inertia is given by

Angular acceleration is given by

Equation of rotational motion

The coefficient of friction is 0.54454
At r = 0.25 m

The force needed to stop the wheel is 104.00902 N
Answer:
The velocity is
Explanation:
From the question we are told that
The mass of the ball is 
The radius is 
The force is 
The speed of the ball is 
Generally the kinetic energy at the top of the circle is mathematically represented as

=>
=>
Generally the work done by the force applied on the ball from the top to the bottom is mathematically represented as

Here d is the length of a semi - circular arc which is mathematically represented as

So


Generally the kinetic energy at the bottom is mathematically represented as

=> 
=> 
From the law of energy conservation

=> 
=>