Answer:
B. Ca(NO2)2
Explanation:
Ions (charged atoms) combine with one another to form stable ionic compounds. In this case, calicium ion (Ca2+) is said to react with NO2, which has a charge of -1 i.e. +1-1(2) = 1-2 = -1.
This means that calcium has a charge of +2 while nitrite ion has charge of -1, hence, when they combine, they exchange their charges, which become their subscript as follows:
Ca2+ + NO2- → Ca(NO2)2
Ca(NO2)2 is a stable ionic compound called calcium nitrite. Notice that it takes two atoms of NO2- to react with one atom of Ca2+.
Both carbon and lead belong to Group IV elements, and thus they have the same number of valence electrons.
<span>In
each of the other options, the two elements belong to different groups,
and thus they do NOT have the same number of valence electrons.
I hope this helped you, please tell me if I am correct or not <3
</span>
Answer:Consider the reaction N2(g) + 3H2(g) =; 2NH3(g). If hydrogen gas is added to this system at equilibrium, will the reaction shift towards reactants
Answer:
46.40 g.
Explanation:
- It is a stichiometric problem.
- The balanced equation of the reaction: 4K + O₂ → 2K₂O.
- It is clear that 4.0 moles of K reacts with 1.0 mole of oxygen produces 2.0 moles of K₂O.
- We should convert the mass of K (38.5 g) into moles using the relation:
<em>n = mass / molar mass,</em>
n = (38.5 g) / (39.098 g/mol) = 0.985 mole.
<em>Using cross multiplication:</em>
4.0 moles of K produces → 2.0 moles of K₂O, from the stichiometry.
0.985 mole of K produces → ??? moles of K₂O.
∴ The number of moles of K₂O produced = (0.985 mole) (2.0 mole) / (4.0 mole) = 0.4925 mole ≅ 0.5 mole.
- Now, we can get the mass of K₂O:
∴ mass = n x molar mass = (0.5 mole) (94.2 g/mol) = 46.40 g.
<em>A: When burning Sulfur, Sulfur Dioxide is released. Having more Oxygen available provides more reactive potential for the burning Sulfur, making it burn much more fiercely. In water, the Sulfur Dioxide forms Sulfurous acid. Added: 12 years ago.</em>
<em />
<em>Explanation:</em>
<h3><em /></h3>