Answer:
The surface gravity is inversely proportional to the square of the radius of the planet
Explanation:
The gravity at the surface of a planet is given by:
where
G is the gravitational constant
M is the mass of the planet
R is the radius of the planet
We see from the formula that the surface gravity is inversely proportional to the square of the radius of the planet, R.
At the Earth's surface, the value of the surface gravity is approximately 9.81 m/s^2.
Answer:
Option A
Solution:
As per the question:
The distance covered by the woman in the North direction, d = 3000 m
Time taken to travel in North direction, t = 25.0 min = 1500 s
Velocity of woman in the south direction, v = 2.00 m/s
Time taken in the south direction, t' = 60.0 min = 3600 s
Now,
The distance covered in the south direction, d' = vt' =
Now, the total displacement is given by:
D = d' - d = 7200 - 3000 = 4200 m in South
(a) Average velocity of the woman in the whole journey is given by:
≈ 0.824 m/s South
This information describes the storm's velocity.
The correct answer is:
<span>Point charges must be in a vacuum.
In fact, the usual form for of the Coulomb's law is:
</span>
<span>where
</span>
is the permittivity of free space
<span>q1 and q2 are the two charges
q is the separation between the two charges
However, this formula is valid only if the charges are in vacuum. If they are in a material medium, the law is modified as follows:
</span>
where
is the relative permittivity, which takes into account the dielectric effects of the material.