1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
attashe74 [19]
3 years ago
13

The interior wall of a building is made from 2×4 wood studs, plastered on one side. If the wall is 13 ft high, determine the loa

d in lb/ft of length of wall that it exerts on the floor
Engineering
1 answer:
Elanso [62]3 years ago
7 0

Answer:

load  = 156 lb/ft

Explanation:

given data

interior wall of a building = 2×4 wood studs

plastered = 1 side

wall height =  13 ft

solution

we get here load so first we get wood stud load  and that is  

we know here from ASCE-7 norm

dead load of 2 x 4 wood studs with 1 side plaster  = 12 psf

and we have given height 13 ft

so load will be =  12 psf × 13 ft

load  = 156 lb/ft

You might be interested in
Water exiting the condenser of a power plant at 45 Centers a cooling tower with a mas flow rate of 15,000 kg/s. A stream of cool
MariettaO [177]

Answer: hello your question is incomplete below is the missing part

question :Determine the temperature of the cooled water exiting the cooling tower

answer : T  = 43.477° C

Explanation:

Temp of water at exit = 45°C

mass flow rate of cooling tower = 15,000 kg/s

Temp of makeup water = 20°C

Assuming an atmospheric pressure of = 101.3 kPa

<u>Determine temperature of the cooled water exiting the cooling tower</u>

Water entering cooling tower at 45°C

Given that Latent heat of water at 45°C = 43.13 KJ/mol

Cp(wet air) = 1.005+ 1.884(y1)

where: y1 - Inlet mole ratio = (0.01257) / (1 - 0.01257) = 0.01273

Hence : Cp(wet air) = 29.145 +  (0.01273) (33.94) = 29.577 KJ/kmol°C

<u>First step : calculate the value of Q </u>

Q = m*Cp*(ΔT) + W(latent heat)

Q = 321.6968 (29.577) (40-30) +  43.13 (18.26089)

Q =  95935.8547 KJ/s

Given that mass rate of water = 15000 kg/s

<u>Hence the temperature of the cooled water can be calculated using the equation below</u>

Q = m*Cp*∆T

Cp(water) = 4.2 KJ/Kg°C

95935.8547 = (15000)*(4.2)*(45 - T)

( 45 - T ) = 95935.8547/ 63000.    ∴ T  = 43.477° C

5 0
3 years ago
Why might construction crews want to install pipes before the foundation is poured
Crazy boy [7]

The answer is choice C

Explanation:

As during construction ,the site is cleared for all debris before laying out the foundation. Even the sewer lines are dug out .

So it will be useful for the construction crews to  connect the pipes to the sewer lines before the foundation is poured.

But usually the steps take in construction activity is:- first the site is cleared for the foundation to be poured  and once the foundation wall is set , then all utilities , including plumbing and electrical activities are done.,

After this process is over, the city inspector comes to check whether the foundation has been laid down as per the code of construction.

Only after that the rest of the construction activity follows through.

3 0
3 years ago
1.0•10^-10 standard form
Drupady [299]

Answer:

1.0 * 10^{-10} = 0.0000000001

Explanation:

Given

1.0 * 10^{-10}

Required

Convert to standard form

1.0 * 10^{-10}

From laws of indices

a^{-x} = \frac{1}{a^x}

So, 1.0 * 10^{-10} is equivalent to

1.0 * 10^{-10} = 1.0 * \frac{1}{10^{10}}

1.0 * 10^{-10} = 1.0 * \frac{1}{10}* \frac{1}{10}* \frac{1}{10}* \frac{1}{10}* \frac{1}{10}* \frac{1}{10}* \frac{1}{10}* \frac{1}{10}* \frac{1}{10}* \frac{1}{10}

1.0 * 10^{-10} = 1.0 * \frac{1}{10000000000}

1.0 * 10^{-10} = 1.0 * 0.0000000001

1.0 * 10^{-10} = 0.0000000001

Hence, the standard form of 1.0 * 10^{-10} is 0.0000000001

3 0
3 years ago
If anyone knows manufacturing plz help
sveta [45]

Answer:

I don't know ask my dad he would

Explanation:

but I can't ask him because he went to get milk and forgot to come back

8 0
3 years ago
Calculate the pressure drop in a duct (measured by a differential oil manometer) if the differential height between the two flui
Burka [1]

Answer:

The pressure drop is 269.7N/m^2

Explanation:

∆P = ∆h × rho × g

∆h = 3.2cm = 3.2/100 = 0.032m, rho = 860kg/m^3, g = 9.8m/s^2

∆P = 0.032×860×9.8 = 269.7N/m^2

6 0
3 years ago
Other questions:
  • A flocculation basin equipped with revolving paddles is 60 ft long (the direction of flow). 45 ft wide, and 14 ft deep and treat
    11·1 answer
  • Show how am MDP with a reward function R(s, a, s’) can be transformed into a different MDP with reward function R(s, a), such th
    15·1 answer
  • The displacement volume of an internal combustion engine is 3 liters. The processes within each cylinder of the engine are model
    10·1 answer
  • Which of the following drivers has the right-of-way?
    9·1 answer
  • If the Zener diode is connected<br>wrong polarity the voltage<br>across the load is?​
    11·1 answer
  • The driver _______
    9·2 answers
  • Tony works as a Sorter in a processing factory. Which qualifications does he most likely have?
    10·2 answers
  • ¿Cuál es el objetivo de la participación del gobierno en la economía?
    6·1 answer
  • Drag each label to the correct location on the table. Match to identify permanent and temporary structures.
    15·1 answer
  • Hole filling fasteners (for example, MS20470 rivets) should not be used in composite structures primarily because of the
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!