Answer:
The crest to trough distance = 8 m
Explanation:
Given that,
The amplitude of a particular wave is 4.0 m.
We need to find the crest to trough distance.
We know that,
Amplitude = The distance from the base line to the crest or the the distance from the baseline to the trough.
It means,
Distance from crest to trough = 2(Amplitude)
= 2(4)
= 8 m
Hence, the crest to trough distance is equal to 8 m.
The solution for this problem is:
r = [(2.90 + 0.0900t²) i - 0.0150t³ j] m/s²
this is for t in seconds and r in meters
v = dr/dt = [0.180t i - 0.0450t² j] m/s²
tan(-36.0º) = -0.0450t² / 0.180t
0.7265 = 0.25t
t = 2.91 s is the velocity vector of the insect
3 bulbs are in series and if the same 3 bulbs are in parallel with the same battery then the bulbs that are connected in parallel will be dimmer
<h3>What is power?</h3>
The rate of doing work is known as power. The Si unit of power is the watt.
Power =work/time
The mathematical expression for the electric power is as follows
P = VI
The same current flows through both bulbs when they are connected in series. A greater voltage drop across the bulb with the higher resistance will result in higher power dissipation and brightness. In the case of the parallel combination, the bulb will be dimmer
Thus, If the same three bulbs are connected in series and parallel with the same battery, the parallelly connected bulbs will be dimmer, therefore the correct option is A
Learn more about power from here
brainly.com/question/3854047
#SPJ1
This can be seen as a trick question because heat engines can typically never be 100 percent efficient. This is due to the presence of inefficiencies such as friction and heat loss to the environment. Even the best heat engines can only go up to around 50% efficiency.