These are the answer options of this question and the comments about their validity:
<span>A) It dictates that the number of molecules on each side of a chemical equation must be the same.
False: the number of molecules can change. Take this simple reaction for example:
2H2(g) + O2 -> 2H2O
You start with 3 molecules, 2 molecules of H2 and 1 molecule of O2, and end with 2 molecules of water. Then the number of molecules of each side is different.
B) It dictates that the number of atoms of each element must be the same on both sides of a chemical equation.
TRUE: in a chemical reaction the atoms remain being the same at start and at the end of the process. Given that each atom has a characteristic mass, their conservation implies the law of conservation mass.
C) It states that the mass of the reactants must remain constant in order for a chemical reaction to proceed.
FALSE. The mass of the reactants changes during a chemical reaction, while they transform into the products.
D) It does not apply to chemical reactions.
FALSE: It is an important law used in the calculus related with chemical reactions.
</span>
Answer:
Which ever item has more water inside of it
Explanation:
Answer:
The structure is shown in the figure.
Explanation:
There is condensation polymersiation in case of lactic acid with the removal of water molecule (dehydration) leading to formation of poly lactic acid.
The structure of PLA is shown in the figure.
Answer:
alpha decay, because alpha particles have two protons and two neutrons. If the isotope has an atomic number two less than the original, it lost two protons, the same amount as in an alpha particle.
Explanation:
Answer:We are already given with the mass of the Xe and it is 5.08 g. We can calculate for the mass of the fluorine in the compound by subtracting the mass of xenon from the mass of the compound.
mass of Xenon (Xe) = 5.08 g
mass of Fluorine (F) = 9.49 g - 5.08 g = 4.41 g
Determine the number of moles of each of the element in the compound.
moles of Xenon (Xe) = (5.08 g)(1 mol Xe / 131.29 g of Xe) = 0.0387 mols of Xe
moles of Fluorine (F) = (4.41 g)(1 mol F/ 19 g of F) = 0.232 mols of F
The empirical formula is therefore,
Xe(0.0387)F(0.232)
Dividing the numerical coefficient by the lesser number.
XeF₆
Explanation: