1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Misha Larkins [42]
3 years ago
5

Two steamrollers begin 100 m apart and head toward each other, each at a constant speed of 1.00 m/s . At the same instant, a fly

that travels at a constant speed of 2.40 m/s starts from the front roller of the southbound steamroller and flies to the front roller of the northbound one, then turns around and flies to the front roller of the southbound once again, and continues in this way until it is crushed between the steamrollers in a collision.
What distance does the fly travel?
Physics
1 answer:
Debora [2.8K]3 years ago
4 0

Answer:

The fly travels 2.4 m

Explanation:

Since the Two steamrollers begin 100 m apart and head toward each other, each at a constant speed of 1.00 m/s, we can find the time until they crash by the formula:

Distance = Speed × Time

Time = Distance /Speed

Time = (100 m) / (1 m/s)

Time = 100 hours

Now, the fly will spend the same amount of time traveling as the steamrollers.

Since the fly moves at a speed of 2.4 m/s and we have a time of one hour the steamroller take to collide, then the fly will go a distance of;

Distance = speed x time = 2.4 × 1 = 2.4 m

You might be interested in
A bus accelerates to 60 m/s to the east in 10 s. What is the buses acceleration? 2. A car traveling at 10.0 m/s to the west acce
professor190 [17]

Answers:

1) a=6\frac{m}{s^{2}}

2) t=8s

Explanation:

1) Acceleration a is defined as the variation of Velocity V in time t :  

a=\frac{V}{t}  (1)

A body also has acceleration when it changes its direction.

In this case we have a bus with a velocity of 60m/s to the east, that accelerates in a time 10s. So, we have to find the bus's acceleration:

a=\frac{60m/s}{10s}  (2)

a=6m/s^{2}  (3)  This is the bus's accelerration

2) Now we have a car that accelerates 2m/s^{2}  to the west in order to reach a speed of 16m/s in the same direction, and we have to find the time t it takes to the car to reach that velocity.

Therefore we have to find  t from (1):

t=\frac{V}{a}  (4)

t=\frac{16m/s}{2m/s^{2}}  (5)

Finally:

t=8s  (6)

3 0
3 years ago
An airplane flies at 150 km/hr. (a) The airplane is towing a banner that is b = 0.8 m tall and l = 25 m long. If the drag coef-
maw [93]

Answer:

  1. Power requirement <u>P</u> for the banner is found to be  30.62 W
  2. Power requirement <u>P</u> for the solid flat plate is found to be 653.225 W
  3. Answer for part(c) is explained below in the explanation section and can be summarized as: The main difference between the drags and power requirements of the two objects of same size was due to their significantly different drag-coefficients. The <em>Cd </em>for banner was given, whereas the <em>Cd </em>for a flat plate is generally found to be around <em><u>1.28</u></em><em> </em>which is the value we used in our calculations that resulted in a huge increase of power to tow the flat plate
  4. Power requirement <u>P</u> for the smooth spherical balloon was found to be 40.08 W

Explanation:

First of all we will establish variables and equations known that are known to us to solve this question. Since we are given the velocity of the airplane:

  1. v = velocity of airplane i.e. 150 km/hr. To convert it into m/s we will divide it by 3.6 which gives us 41.66 m/s
  2. The density of air at s.t.p (standard temperature pressure) is given as d = 1.225 kg / m^3
  3. The power can be determined this equation: P = F . v, where F represents <em>the drag-force</em> that we will need to determine and v represents the<em> velocity of the airplane</em>
  4. The equation to determine drag-force is: F = 1/2 * d *  C_d * A

In the drag-force equation Cd represents the c<em>o-efficient of drag</em> and A represents the <em>frontal area of the banner/plate/balloon (the object being towed)</em>

Frontal area A of the banner is : 25 x 0.8 = 20 m^2

<u>Part a)</u> We will plug in in the values of Cd, d, A in the drag-force equation i.e. Fd = <em>1/2 * 0.06* 1.225 * 20</em> = 0.735 N. Now to find the power P we will use P = F . v i.e.<em> 0.735 * 41.66</em> = <u><em>30.62 W</em></u>

<em></em>

<u>Part b) </u>For this part the only thing that has fundamentally changed is the drag-coefficient Cd since it's now of a solid flat plate and not a banner. The drag-coefficient of a flat plate is approximately given as : Cd_fp = 1.28

Now we will plug-in our values into the same equations as above to determine drag-force and then power. i.e. Fd = <em>1/2 * 1.28 * 1.225 * 20</em> = 15.68 N. Using Fd to determine power, P = 15.68 * 41.66 = <u><em>653.225 W</em></u>

<u><em></em></u>

<u>Part c)</u> The main reason for such a huge power difference between two objects of same size was due to their differing drag-coefficients, as drag-coefficients are generally large for objects that are not of a streamlined shape and leave a large wake (a zone of low air pressure behind them). The flat plate being solid had a large Cd where as the banner had a considerably low Cd and therefore a much lower power consumption

<u>Part d)</u> The power of a smooth sphere can be calculated in the same manner as the above two. We just have to look up the Cd of a smooth sphere which is found to be around 0.5 i.e. Cd_s = 0.5. Area of sphere A is given as : <em>pi* r^2 (r = d / 2).</em> Now using the same method as above:

Fd = 1/2 * 0.5 * 3.14 * 1.225 = 0.962 N

P = 0.962 * 41.66 = <u><em>40.08 W</em></u>

4 0
3 years ago
Copernicus incorrectly assumed that the planets?
hammer [34]
Nicholas Copernicus correctly assumed that the planets revolved around the sun but he incorrectly assumed that the planets followed a perfect circle orbit around the sun. It was later on discovered by Johannes Kepler that the planets moved around the sun following an elliptical orbit.
6 0
3 years ago
The planet's hawks and block their near each other in the door again system the dworkin's have very advanced technology and a do
Virty [35]

Answer: A,B, and E

Explanation: Just checked I got them right:)

4 0
3 years ago
At what speed would a 3.00 x 10^4 kg airplane have to fly and with a momentum of 1.60 x 10^9 kg.m/s
Ymorist [56]

Answer:

5.3×10⁴ m/s

Explanation:

From the question,

Momentum = mass× velocity

M = mV................ Equation 1

Where M = momentum of the airplane, m = mass of the airplane, V = Velocity of the airplane

make V the subject of the equation

V = M/m.................. Equation 2

Given: M = 1.6×10⁹ Kg.m/s, m = 3.0×10⁴ kg

Substitute these values into equation 2

V = 1.6×10⁹/3.0×10⁴

V = 5.3×10⁴ m/s

3 0
3 years ago
Other questions:
  • Prisms seperate __ light, such as that from the Sun by wavelength
    15·1 answer
  • Calculate the average speed (in m/s) of a car that travels 50km in 30 minutes.
    15·1 answer
  • What type of device uses an electromagnet to convert electrical energy into mechanical energy?
    11·2 answers
  • Are diatomic compounds ionic or covalent?
    8·1 answer
  • Most of the energy we use today comes from renewable sources/<br> a. True<br> b. False
    9·2 answers
  • A rock is thrown off a cliff with a horizontal velocity of 18.3 m/s. Right before it hits the ground, it has a vertical velocity
    6·1 answer
  • The lifting force generated by fluids on immersed objects is known as ____________.
    7·1 answer
  • Tidal Forces near a Black Hole. An astronaut inside a spacecraft, which protects her from harmful radiation, is orbiting a black
    6·1 answer
  • During a car collision, the knee, thighbone, and hip can sustain a force no greater than 4000 N. Forces that exceed this amount
    7·1 answer
  • A uniform solid sphere of unknown radius and mass floats exactly half-submerged in a fluid of density 999 kg/m3. Find the densit
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!