Answer:- Third choice is correct, 17.6 moles
Solution:- The given balanced equation is:
Al_2(SO_4)_3+6KOH\rightarrow 2Al(OH)_3+3K_2SO_4
We are asked to calculate the moles of potassium hydroxide needed to completely react with 2.94 moles of aluminium sulfate.
From the balanced equation, there is 1:6 mol ratio between aluminium sulfate and potassium hydroxide.
It is a simple mole to mole conversion problem. We solve it using dimensional set up as:
2.94molAl_2(SO_4)_3(\frac{6molKOH}{1molAl_2(SO_4)_3})
= 17.6 mol KOH
So, Third choice is correct, 17.6 moles of potassium hydroxide are required to react with 2.94 moles of aluminium sulfate.
Answer:
2
Explanation:
Each orbital can hold two electrons. One spin-up and one spin-down.
Answer:
The empirical formula is SF6 (option E)
Explanation:
Step 1: Data given
Mass of sulfur = 3.21 grams
Mass of fluorine = 11.4 grams
Molar mass sulfur = 32.065 g/mol
Molar mass fluorine = 19.00 g/mol
Step 2: Calculate moles
Moles = mass /molar mass
Moles sulfur = 3.21 grams / 32.065 g/mol
Moles sulfur = 0.100 moles
Moles fluorine = 11.4 grams / 19.00 g/mol
Moles fluorine = 0.600 moles
Step 3: Calculate mol ratio
We divide by the smallest amount of moles
S: 0.100 / 0.100 = 1
F : 0.600 / 0.100 = 6
The empirical formula is SF6 (option E)
Helium has the smallest atomic radius® Α⇒Ω
C. Formation of a new substance