Answer:
The atmosphere is the superhighway in the sky that moves water everywhere over the Earth. Water at the Earth's surface evaporates into water vapor which rises up into the sky to become part of a cloud which will float off with the winds, eventually releasing water back to Earth as precipitation.
Explanation:
If you don't want to plagiarize change it up a bit.
77.
To find the answer u have to subtract the atomic mass from the atomic number.
PH is what they call measure of the concentration<span> of hydrogen ions in a solution. Strong </span>acids <span>like hydrochloric </span>acid<span> at the sort of </span>concentrations<span> you normally use in the lab have a pH around 0 to 1. The lower the pH, the higher the </span>concentration<span> of hydrogen ions in the solution. </span>
Answer: The isotope is represented as 
Explanation:
General representation of an element is given as:
where,
Z represents Atomic number
A represents Mass number
X represents the symbol of an element
Atomic number is defined as the number of protons or number of electrons that are present in an atom.
Atomic number = Number of electrons = Number of protons = 7 (for nitrogen)
Mass number is defined as the sum of number of protons and neutrons that are present in an atom.
Mass number = Number of protons + Number of neutrons = 7+8 = 15
Thus the isotope is represented as 
Answer:
n=2 to n=4 < n=6 to n=8 < n=10 to n=12 < n=14 to n=16
Explanation:
According to Neils Bohr, electrons in an atom are found in specified energy levels. Transitions are possible from one energy level to another when the electron receives sufficient energy usually in the form of a photon of electromagnetic radiation of appropriate frequency and wavelength. The energy of this photon corresponds to the energy difference between the two energy levels. Thus the higher the energy difference between energy levels, the greater the energy of the photon required to cause the transition and the shorter the wavelength of the photon.
High energy photons have a very short wavelength. It should be noted that as n increases, the energy of successive energy levels decreases and transitions between them now occurs at longer wavelengths. Hence, the highest energy and shortest wavelength of photons are required for transition involving lower values of n because such electrons are closer to the nucleus and are more tightly bound to it than electrons found at a greater distance from the nucleus.
Hence transition involving electrons at higher energy levels occur at a longer wavelength compared to transition involving electrons closer to the nucleus. This is the basis for the arrangement of wavelengths required to effect the various electronic transitions shown in the answer.