Answer:
The vapor pressure in solution is 0,0051 atm
Explanation:
This is the formula for vapor pressure lowering, the colligative property.
P vapor = Pressure sv pure . Xsv
Where Xsv is data.
Xsv means Molar fraction (moles solvent/total n° moles)
Vapor pressure of water, pure is 17.5 mmHg
P vapor = 0,0313 atm . 0163
P vapor in solution = 0,0051 atm
Molar fraction does not have units
A solution will have less vapor pressure than that observed in the pure solvent.
Thank you for posting your question here at brainly. I hope the answer will help you. Feel free to ask more questions.
Below are the choices that can be found elsewhere:
a. [CH3NH-] * [OH-] / [CH3NH3+]
<span>b. [CH3NH3+] / ([CH3NH2] * [OH-]) </span>
<span>c. [CH3NH3+] * [OH-] / [CH3NH2] </span>
<span>d. [CH3NH3+] * [OH-] / [CH3NH2] * [H2O]
</span>
The answer is C.
Answer:
See explanation below
Explanation:
The first two pictures show the reagents used in these reactions a) and b). As it was stated, An E2 reaction proceeds with an antiperiplanar stereochemistry, so in the case of reaction a) it fill form a product with the groups in opposite directions. In other words, a Trans product.
In the case of reaction b) we have the same reaction, with the difference that we have changed the CH3 and phenyl group of positions. This will cause that the reaction will proceed the same but the stereochemistry of the final product will be changed too. In this case, and according to the picture 3 attached, we can see that the product formed is a cis product. So we can conclude that the relation of product a) and b) is that they are isomers, the trans and cis isomers respectively. See picture below for mechanism and products
T=2T
m=10 g
m=m₀2^(-t/T)
m₀=m/{2^(-2T/T)=m/2⁻²
m₀=10/2⁻²=40 g
40 grams
Answer:
0.1082M of Barium Hydroxide
Explanation:
KHP reacts with Ba(OH)2 as follows:
2KHP + Ba(OH)2 → 2H2O + Ba²⁺ + 2K⁺ + 2P²⁻
<em>Where 2 moles of KHP reacts per mole of barium hydroxide</em>
<em />
To solve this question we must find the moles of KHP in 1.37g. With these moles and the reaction we can find the moles of Ba(OH)2 and its molarity using the volume of the solution (31.0mL = 0.0310L) as follows:
<em>Moles KHP -Molar mass: 204.22g/mol-</em>
1.37g * (1mol / 204.22g) = 0.006708 moles KHP
<em>Moles Ba(OH)2:</em>
0.006708 moles KHP * (1mol Ba(OH)2 / 2mol KHP) =
0.003354 moles Ba(OH)2
<em>Molarity:</em>
0.003354 moles Ba(OH)2 / 0.0310L =
<h3>0.1082M of Barium Hydroxide</h3>