Answer:
The pressure is 
Explanation:
From the question we are told that
The initial pressure is 
The temperature is 
Let the first volume be
Then the final volume will be 
Generally for a diatomic gas

Here r is the radius of the molecules which is mathematically represented as

Where
are the molar specific heat of a gas at constant pressure and the molar specific heat of a gas at constant volume with values

=> 
=> 
=> ![P_2 = [\frac{1}{2} ]^{\frac{7}{5} } * 11.2](https://tex.z-dn.net/?f=P_2%20%20%3D%20%20%5B%5Cfrac%7B1%7D%7B2%7D%20%5D%5E%7B%5Cfrac%7B7%7D%7B5%7D%20%7D%20%2A%2011.2)
=> 
The option that could be the hypothesis for this experiment is that D. Abstract paintings may elicit feelings of stress as students try to determine the meanings of the paintings; therefore, abstract paintings may cause college students to report lower feelings of peace.
<h3>What is a hypothesis?</h3>
It should be noted that a hypothesis simply means the proposed explanation made on the basis of limited evidence.
From the information, Smith is conducting an experiment to determine if paintings of landscapes produce more peaceful feelings than abstract paintings.
Therefore, the option that could be the hypothesis for this experiment is that abstract paintings may elicit feelings of stress as students try to determine the meanings of the paintings; therefore, abstract paintings may cause college students to report lower feelings of peace.
Learn more about hypothesis on:
brainly.com/question/11555274
#SPJ1
Answer:
if we measure the change in height of the gas within the had and obtain a straight line in relation to the depth we can conclude that the air complies with Boye's law.
Explanation:
The air in the tube can be considered an ideal gas,
P V = nR T
In that case we have the tube in the air where the pressure is P1 = P_atm, then we introduce the tube to the water to a depth H
For pressure the open end of the tube is
P₂ = P_atm + ρ g H
Let's write the gas equation for the colon
P₁ V₁ = P₂ V₂
P_atm V₁ = (P_atm + ρ g H) V₂
V₂ = V₁ P_atm / (P_atm + ρ g h)
If the air obeys Boyle's law e; volume within the had must decrease due to the increase in pressure, if we measure the change in height of the gas within the had and obtain a straight line in relation to the depth we can conclude that the air complies with Boye's law.
The main assumption is that the temperature during the experiment does not change
Answer:
1.21
Explanation:
Heat rise in the body happens due to heat supplied by water to the body.
Heat rise in body = m₁ c₁ ΔT₁
Where m₁ is mass of body and c₁ is its specific heat of body
Heat lost from water to the body = m₂ c₂ ΔT₂
Where m₂ is mass of water and c₂ is its specific heat of water ( c₂ =1 (since water))
Equating both:
15.3 x c₁ x 4.3 = 80.2 x 1 x 4.3
⇒ c₁ = 80.2 / (15.3 x 4.3) = 1.21