It is commonly perceived as "thickness", or resistance to pouring. Viscosity describes a fluid's internal resistance to flow and may be thought of as a measure of fluid friction. Thus, water is "thin", having a low viscosity, while vegetable oil is "thick" having a high viscosity.
Answer:
Stars are forming in the spiral arms so there are high mass, hot, blue stars in the arms.
Explanation:
Answer:
a) wavelength = 656.3 nm
b) the value of Rydberg's constant for this measurement is 1.097 × 10⁷ m⁻¹
Explanation:
Given that;
angle of diffraction Θₓ = 22.78°
incident angle Θ₁ = 0
slit separation d = 5900 lines per cm = 1/5900 cm = 10⁻²/5900 m = 0.01/5900 m
order of diffraction n = 1
wavelength λ = ?
to find the wavelength, we use the expression
λ = d (sinΘ₁ + sinΘₓ) / n
To find the wavelength λ;
λ = 0.01/5900 × (sin0 + sin22.78° )
λ = 6.5626 × 10⁻⁷ m
λ = 656.3 x 10⁻⁹ m
∴ λ = 656.3 nm
b)
According Balnur's series spectral lines; n₁ = 3, n₂ = 2 and
λ = R [ 1/n₂² - 1/n₁²]
where R is Rydberg's constant
from λ = R [ 1/n₂² - 1/n₁²]
R = 1/λ [n₂²n₁² / n₁² - n₂²]
R = 10⁹/ 656.3 [ 9 × 4 / 9 - 4 ]
R = 1.097 × 10⁷ m⁻¹
Therefore the value of Rydberg's constant for this measurement is 1.097 × 10⁷ m⁻¹
*Graph is attached with the answer*
Answer:
Total distance traveled by the car is 40 m
Explanation:
It can be seen from the graph that for the first 4 second car is moving with uniform acceleration and for next 2 second it has constant velocity
So, we solved this question in 2 parts
Part 1:
initial velocity = v₁ = 0 m/s
final velocity = v₂ = 10 m/s
time = t = 4 s
acceleration = a = (v₂ - v₁)/t
a = 10/4 = 2.5 m/s²
Using 3rd equation of motion
2as = v₂² - v₁²
2(2.5)s = 10²
s₁ = 100/5
s₁ = 20 m
Part 2:
s₂ = v₂t
s₂ = 10 × 2
s₂ = 20 m
Total distance = S = s₁ + s₂
= 20 + 20
S = 40 m