1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Marina86 [1]
3 years ago
8

The undisturbed soil at given borrow pit is found to have the following property:

Engineering
1 answer:
tankabanditka [31]3 years ago
7 0

Answer:

Check the explanation

Explanation:

Determine the weight o ids in the each truck °slim the relation,  

W,=\frac{W}{1+w}

Here, W is net weight of soil and water on the truck and w is water content  

substitute 72 7 kN for W and 15% for w.

you will need to also determine the number of truck loads required using the relation:

Number of truck loads required = \frac{W_{sc} }{W_{s}}

Kindly check the attached image below for the full explanation to the question above.

You might be interested in
A rigid 10-L vessel initially contains a mixture of liquid and vapor water at 100 °C, with a quality factor of 0.123. The mixtur
masya89 [10]

Answer:

Q_{in} = 46.454\,kJ

Explanation:

The vessel is modelled after the First Law of Thermodynamics. Let suppose the inexistence of mass interaction at boundary between vessel and surroundings, changes in potential and kinectic energy are negligible and vessel is a rigid recipient.

Q_{in} = U_{2} - U_{1}

Properties of water at initial and final state are:

State 1 - (Liquid-Vapor Mixture)

P = 101.42\,kPa

T = 100\,^{\textdegree}C

\nu = 0.2066\,\frac{m^{3}}{kg}

u = 675.761\,\frac{kJ}{kg}

x = 0.123

State 2 - (Liquid-Vapor Mixture)

P = 476.16\,kPa

T = 150\,^{\textdegree}C

\nu = 0.2066\,\frac{m^{3}}{kg}

u = 1643.545\,\frac{kJ}{kg}

x = 0.525

The mass stored in the vessel is:

m = \frac{V}{\nu}

m = \frac{10\times 10^{-3}\,m^{3}}{0.2066\,\frac{m^{3}}{kg} }

m = 0.048\,kg

The heat transfer require to the process is:

Q_{in} = m\cdot (u_{2}-u_{1})

Q_{in} = (0.048\,kg)\cdot (1643.545\,\frac{kJ}{kg} - 675.761\,\frac{kJ}{kg} )

Q_{in} = 46.454\,kJ

3 0
3 years ago
An interrupted line of sight means changes in ......and .... are necessary for re-establishing a ......... to the driver’s path
Mrrafil [7]

Answer:

Welcome to Gboard clipboard, any text that you copy will be saved here.

Explanation:

Touch and hold a clip to pin it. Unpinned clips will be deleted after 1 hour.

5 0
2 years ago
A spring-loaded piston-cylinder contains 1 kg of carbon dioxide. This system is heated from 104 kPa and 25 °C to 1,068 kPa and 3
labwork [276]

Answer:

Q = -68.859 kJ

Explanation:

given details

mass co_2 = 1 kg

initial pressure P_1 = 104 kPa

Temperature T_1 = 25 Degree C = 25+ 273 K = 298 K

final pressure P_2 = 1068 kPa

Temperature T_2 = 311 Degree C = 311+ 273 K = 584 K

we know that

molecular mass of co_2 = 44

R = 8.314/44 = 0.189 kJ/kg K

c_v = 0.657 kJ/kgK

from ideal gas equation

PV =mRT

V_1 = \frac{m RT_1}{P_1}

       =\frac{1*0.189*298}{104}

V_1 = 0.5415 m3

V_2 = \frac{m RT_2}{P_2}

     =\frac{1*0.189*584}{1068}

V_1 = 0.1033 m3

WORK DONE

W =P_{avg}*{V_2-V_1}

w = 586*(0.1033 -0.514)

W =256.76 kJ

INTERNAL ENERGY IS

\Delta U  = m *c_v*{V_2-V_1}

\Delta U  = 1*0.657*(584-298)

\Delta U  =187.902 kJ

HEAT TRANSFER

Q = \Delta U  +W

   = 187.902 +(-256.46)

Q = -68.859 kJ

7 0
3 years ago
Describe ICP/OES in detail.
alex41 [277]

Answer:

ICP -OES stand for inductively coupled plasma optical emission spectroscopy

Explanation:

It is techniques that known as trace level technique which help to identify and quantify the element present in sample by using spectra emission.

The analysis process include desolvates, ionization and excitation of the sample. The sample is identify by analyzing the emission line from it and quantify by analyzing the intensity of same emission lines.

7 0
3 years ago
Read 2 more answers
A rigid tank having 25 m3 volume initially contains air having a density of 1.25 kg/m3, then more air is supplied to the tank fr
Hoochie [10]

Answer:

\Delta m = 102.25\,kg

Explanation:

The mass inside the rigid tank before the high pressure stream enters is:

m_{o} = \rho_{air}\cdot V_{tank}

m_{o} = (1.25\,\frac{kg}{m^{3}} )\cdot (25\,m^{3})

m_{o} = 31.25\,kg

The final mass inside the rigid tank is:

m_{f} = \rho \cdot V_{tank}

m_{f} = (5.34\,\frac{kg}{m^{3}} )\cdot (25\,m^{3})

m_{f}= 133.5\,kg

The supplied air mass is:

\Delta m = m_{f}-m_{o}

\Delta m = 133.5\,kg-31.25\,kg

\Delta m = 102.25\,kg

4 0
3 years ago
Other questions:
  • Define various optical properties of engineering materials
    11·1 answer
  • Which of the following is not a primary or fundamental dimension? (a)-mass m (b)-length L (c)- timer t (d)-volume V
    5·1 answer
  • When fermentation units are operated with high aeration rates, significant amounts of water can be evaporated into the air passi
    13·1 answer
  • The news media often report an earthquake's magnitude on the Richter scale. Which of the following items are characteristics of
    14·1 answer
  • A refrigerator operates on average for 10.0 hours an day. If the power rating is the refrigerator is 709 w how much electrical e
    13·1 answer
  • As part of an insurance company’s training program, participants learn how to conduct an analysis of clients’ insurability. The
    9·1 answer
  • A private plane pilot is what kind of individual transportation position? professional level mid-level entry-level EPA-certified
    9·1 answer
  • Find the general solution of the equation<br>a) Tan A = 1/√3​
    11·1 answer
  • Complete the following sentence.
    10·1 answer
  • 3. A steel pipe of outside diameter 20 mm and thickness 3 mm is
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!