Not sure what your question means but the nearest star is Alpha Centauri which is about 4.2 light years (ly) away. This is roughly 4x10¹³ km away. A billion is 10⁹ so this is 4x10⁴ larger than a billion. I'd say the last one then...
They do not demonstrate Earth's tilt. In fact, they're not "used" to demonstrate anything. It works the other way:. When you observe the Coriolis effect and the behavior of the Foucault pendulum, and you try to explain why the behave the way they do, one possible simple explanation for both of them is the Earth's ROTATION. Then, when you also observe the rising and setting of the sun and moon, and you also notice how the NUMBERS all go together, the case for the rotating, spherical Earth gets stronger and stronger.
We have that the most stable nuclei are the ones with the highest average binding energy. We see that Nitrogen has a mass number of 15 and that in this region of the graph average binding energy is low. Silver and Gold are along a line where there is a constant decline in average binding energy; silver has more than gold. However, we see that at the start of this decline, there is Fe 56. This region has the elements with the highest average binding energy; Nickel with a mass number of 58 is right there and thus it is the most stable nucleus out of the listed ones.
Hey there!
There's many ways to do it - like melting and evaporating.
For example, we'll use water. Plain old water in a water bottle. Right now, it's in its liquid state of matter, but say you put it in the freezer for an hour. That would change its state of matter to solid, since it would be solid ice. Now, if you were to put it out in the sun on a blazing hot day for a couple of hours, it would evaporate and become water vapor, a gas. Lastly, if you can cool that water vapor it becomes a liquid again.
Hope this helps!