Answer:
element having 2+ valence electrons can transfer its more than one electron that is 2 electron completely.
Explanation:
- Group IIA have 2+ valency and two electrons in its valance shell.
- Its Electropositivity is high and have the tendency to donate it two electrons.
- Element of IIA form ionic with most electronegative element.
Examples:
Cu²⁺, Mg²⁺, Sr²⁺ are examples having 2+ valance electron
one of the following is examples of element that have 2+ valence electrons
MgCl₂
Atomic number of Magnesium (Mg) is 12
Electronic Configuration of Mg:
1s², 2s², 2p⁶, 3s²
or
K =2
L = 8
M = 2
So, it have to give its 2 electrons to form a stable compound.
Similarly
Chlorine atomic number is 17
Electronic Configuration of Chlorine:
1s², 2s², 2p⁶, 3s², 3p⁵
or
K =2
L = 8
M = 7
So, it have to gain one electrons to form a stable compound and complete its octet.
So,
Two chlorine atom as a molecule gain 2 electrons from Mg²⁺ atom
So one Mg²⁺ and 2 Cl⁻ atoms form an ionic bond
where in this ionic bond Mg²⁺ transfer its 2 valence electron completely and chlorine molecule accept 2 electrons.
Cl-----Mg------Cl
So the Answer is
element having 2+ valence electrons can transfer its more than one electron that is 2 electron completely.
Place a burning splint near the opening of a test tube. If a popping noise occurs, it's probably hydrogen. Place a glowing splint in the test tube, and if it reignites, it could be oxygen. Place a burning splint into a test tube, and if it goes out, it could be carbon dioxide.
The element Sodium (Na) has 11 protons and 1 valence electron.
Answer:
2KCl + F₂ → 2KF + Cl₂
Explanation:
Law of conservation of mass:
According to the law of conservation mass, mass can neither be created nor destroyed in a chemical equation.
This law was given by French chemist Antoine Lavoisier in 1789. According to this law mass of reactant and mass of product must be equal, because masses are not created or destroyed in a chemical reaction.
2KCl + F₂ → 2KF + Cl₂
In this equation mass of reactant and product is equal. There are 2 potassium 2 chlorine and fluorine atoms on both side of equation it means mass remain conserved.
All other options are incorrect because mass is not conserved.
Mg₂ + LiBr ---> LiMg + Br
In this equation mass of magnesium is more on reactant side.
Na +O₂ ---> Na₂O
In this equation there is more oxygen and less sodium on reactant side while there is more sodium and less oxygen on product side.
H₂O ---> H₂ + O₂
In this equation there is less oxygen on reactant side while more oxygen on product side.
Moles of gas = 0.369
<h3>Further explanation</h3>
Given
P = 2 atm
V = 5.3 L
T = 350 L
Required
moles of gas
Solution
Ideal gas Law

Avogadro's law : at the same temperature and pressure, the ratio of gas volume will be equal to the ratio of gas moles
moles of O₂ = 45% x 0.369 = 0.166
moles of Ar = 12% x 0.369 = 0.044
moles of N = 43% x 0.369 = 0.159