1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
mixer [17]
2 years ago
7

A train starts from rest at station A and accelerates at 0.6 m/s^2 for 60 s. Afterwards it travels with a constant velocity for

25 min. It then decelerates at 1.2 m/s^2 until it is brought to rest at station B. Determine the distance between the stations.
Engineering
1 answer:
Aleks [24]2 years ago
7 0

Answer:

The distance between the station A and B will be:

x_{A-B}=55.620\: km  

Explanation:

Let's find the distance that the train traveled during 60 seconds.

x_{1}=x_{0}+v_{0}t+0.5at^{2}

We know that starts from rest (v(0)=0) and the acceleration is 0.6 m/s², so the distance will be:

x_{1}=\frac{1}{2}(0.6)(60)^{2}

x_{1}=1080\: m

Now, we need to find the distance after 25 min at a constant speed. To get it, we need to find the speed at the end of the first distance.

v_{1}=v_{0}+at

v_{1}=(0.6)(60)=36\: m/s

Then the second distance will be:

x_{2}=v_{1}*1500

x_{2}=(36)(1500)=54000\: m        

The final distance is calculated whit the decelerate value:

v_{f}^{2}=v_{1}^{2}-2ax_{3}

The final velocity is zero because it rests at station B. The initial velocity will be v(1).

0=36^{2}-2(1.2)x_{3}

x_{3}=\frac{36^{2}}{2(1.2)}  

x_{3}=540\: m

Therefore, the distance between the station A and B will be:

x_{A-B}=x_{1}+x_{2}+x_{3}  

x_{A-B}=1080+54000+540=55.620\: km  

I hope it helps you!

 

You might be interested in
Please help me with this. Picture
Tamiku [17]

Answer:

in so confused

Explanation:

??

7 0
3 years ago
Pick a subjectarea/field/topic that you are interested in. For each of the following Bonham- Carver uses of GIS give an example
Vanyuwa [196]

Answer:

I hope following attachment will help you a lot!

Explanation:

3 0
3 years ago
The Cv factor for a valve is 48. Compute the head loss when 30 GPM of water passes through the valve.
dlinn [17]

Answer:

The head loss in Psi is 0.390625 psi.

Explanation:

Fluid looses energy in the form of head loss. Fluid looses energy in the form of head loss when passes through the valve as well.

Given:

Factor cv is 48.

Flow rate of water is 30 GPM.

GPM means gallon per minute.

Calculation:

Step1

Expression for head loss for the water is given as follows:

c_{v}=\frac{Q}{\sqrt{h}}

Here, cv is valve coefficient, Q is flow rate in GPM and h is head loss is psi.

Step2

Substitute 48 for cv and 30 for Q in above equation as follows:

48=\frac{30}{\sqrt{h}}

{\sqrt{h}}=0.625

h = 0.390625 psi.

Thus, the head loss in Psi is 0.390625 psi.

 

5 0
2 years ago
A heat engine operates between 2 reservoirs at TH and 18oC. The heat engine receives 17,000 kJ/h from the high temperature reser
lisabon 2012 [21]

Answer:

See explaination

Explanation:

Please kindly check attachment for the step by step solution of the given problem

4 0
2 years ago
An equal-tangent sag vertical curve (with a negative initial and a positive final grade) is designed for 55 mi/h. The PVI is at
Varvara68 [4.7K]

Answer:

The lowest point of the curve is at 239+42.5 ft where elevation is 124.16 ft.

Explanation:

Length of curve is given as

L=2(PVT-PVI)\\L=2(242+30-240+00)\\L=2(230)\\L=460 ft

G_2 is given as

G_2=\frac{E_{PVT}-E_{PVI}}{0.5L}\\G_2=\frac{127.5-122}{0.5*460}\\G_2=0.025=2.5 \%

The K value is given from the table 3.3 for 55 mi/hr is 115. So the value of A is given as

A=\frac{L}{K}\\A=\frac{460}{115}\\A=4

A is given as

-G_1=A-G_2\\-G_1=4.0-2.5\\-G_1=1.5\\G_1=-1.5\%

With initial grade, the elevation of PVC is

E_{PVC}=E_{PVI}+G_1(L/2)\\E_{PVC}=122+1.5%(460/2)\\E_{PVC}=125.45 ft\\

The station is given as

St_{PVC}=St_{PVI}-(L/2)\\St_{PVC}=24000-(230)\\St_{PVC}=237+70\\

Low point is given as

x=K \times |G_1|\\x=115 \times 1.5\\x=172.5 ft

The station of low point is given as

St_{low}=St_{PVC}-(x)\\St_{low}=23770+(172.5)\\St_{low}=239+42.5 ft\\

The elevation is given as

E_{low}=\frac{G_2-G_1}{2L} x^2+G_1x+E_{PVC}\\E_{low}=\frac{2.5-(-1.5)}{2*460} (1.72)^2+(-1.5)*(1.72)+125.45\\E_{low}=124.16 ft

So the lowest point of the curve is at 239+42.5 ft where elevation is 124.16 ft.

3 0
3 years ago
Other questions:
  • Water at 20oC, with a free-stream velocity of 1.5 m/s, flows over a circular pipe with diameter of 2.0 cm and surface temperatur
    13·1 answer
  • Talc and graphite are two of the lowest minerals on the hardness scale. They are also described by terms like greasy or soapy. B
    14·1 answer
  • Block B starts from rest, block A moves with a constant acceleration, and slider block C moves to the right with a constant acce
    11·1 answer
  • A non-linear analog force sensor outputs the following voltages for different forces.
    7·1 answer
  • Describe a pro and con of having a passenger in the car
    11·1 answer
  • Resistors of 150 Ω and 100 Ω are connected in parallel. What is their equivalent resistance?
    13·1 answer
  • Should i show my face?
    8·2 answers
  • I know this answer i just want too see if people know it too
    9·2 answers
  • A single-phase load is located 2800 ft from its source. The load draws a current of 86 A and operates on 480 V. The maximum volt
    10·1 answer
  • Question 6
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!