Answer: precision
Explanation: Because accuracy is where you keep on getting it right but precision is where you get closer and closer
Answer:
heat loss per 1-m length of this insulation is 4368.145 W
Explanation:
given data
inside radius r1 = 6 cm
outside radius r2 = 8 cm
thermal conductivity k = 0.5 W/m°C
inside temperature t1 = 430°C
outside temperature t2 = 30°C
to find out
Determine the heat loss per 1-m length of this insulation
solution
we know thermal resistance formula for cylinder that is express as
Rth =
.................1
here r1 is inside radius and r2 is outside radius L is length and k is thermal conductivity
so
heat loss is change in temperature divide thermal resistance
Q = 
Q = 
Q = 4368.145 W
so heat loss per 1-m length of this insulation is 4368.145 W
Reflection helps designers to learn from their experiences, to integrate and co-ordinate different aspects of a design situation, to judge the progress of the design process, to evaluate interactions with the design context, and to plan suitable future design activities.
Answer:

Explanation:
We are given:
m = 1.06Kg

T = 22kj
Therefore we need to find coefficient performance or the cycle


= 5
For the amount of heat absorbed:

= 5 × 22 = 110KJ
For the amount of heat rejected:

= 110 + 22 = 132KJ
[tex[ q_H = \frac{Q_L}{m} [/tex];
= 
= 124.5KJ
Using refrigerant table at hfg = 124.5KJ/Kg we have 69.5°c
Convert 69.5°c to K we have 342.5K
To find the minimum temperature:
;

= 285.4K
Convert to °C we have 12.4°C
From the refrigerant R -134a table at
= 12.4°c we have 442KPa
Answer:
14.52 minutes
<u>OR</u>
14 minutes and 31 seconds
Explanation:
Let's first start by mentioning the specific heat of air at constant volume. We consider constant volume and NOT constant pressure because the volume of the room remains constant while pressure may vary.
Specific heat at constant volume at 27°C = 0.718 kJ/kg*K
Initial temperature of room (in kelvin) = 283.15 K
Final temperature (required) of room = 293.15 K
Mass of air in room= volume * density= (4 * 5 * 7) * (1.204 kg/m3) = 168.56kg
Heat required at constant volume: 0.718 * (change in temp) * (mass of air)
Heat required = 0.718 * (293.15 - 283.15) * (168.56) = 1,210.26 kJ
Time taken for temperature rise: heat required / (rate of heat change)
Where rate of heat change = 10000 - 5000 = 5000 kJ/hr
Time taken = 1210.26 / 5000 = 0.24205 hours
Converted to minutes = 0.24205 * 60 = 14.52 minutes