<span>Amino acids which are known to be linked by peptide bonds they form polypeptide chains.
Proteins are linear polymers are formed by way of linking an a-carboxy group of one amino acid to a-amino of different amino acids which have peptide bond. The formation which results from two amino acids which result in a loss of a water molecule. The best process of the reaction is hydrolysis.</span>
The ions present in the solution of Na₃PO₄ are:
3Na⁺¹ and 1PO₄⁻³
there are 3 sodium ions (Na⁺¹) are present, these are cations (+).
And 1 phosphate ion (PO₄⁻³) is present, this is anion (-),
When these cations and ions meet together a compound is formed, in this case 3 sodium ions make a bond with 3 oxygens of phosphate and makes a compound of sodium phosphate.
HBr reacts with LiOH and forms LiBr and H₂O as the products. The balanced reaction is
LiOH(aq) + HBr(aq) → LiBr(aq) + H₂O(l)
Molarity (M) = moles of solute (mol) / volume of the solution (L)
Molarity of LiOH = 0.205 M
Volume of LiOH = 29.15 mL = 29.15 x 10⁻³ L
Hence,
moles of LiOH = molarity x volume of the solution
= 0.205 M x 29.15 x 10⁻³ L
= 5.97575 x 10⁻³ mol
The stoichiometric ratio between LiOH and HBr is 1 : 1.
Hence,
moles of HBr in 25.0 mL = moles of LiOH added
= 5.97575 x 10⁻³ mol
Hence, molarity of HBr = 5.97575 x 10⁻³ mol / 25.00 x 10⁻³ L
= 0.23903 M
≈ 0.239 M
Hence, the molarity of the HBr is 0.239 M.
Answer:
B mixture can be separated by physical means