Answer:
Option D. atm, L, K, mole
Explanation:
To know which option is correct, do the following:
We shall use the standard value for each variable to obtain the gas constant. This can be obtained as follow:
Volume (V) = 22400 mL
Pressure (P) = 760 mmHg
Number of mole (n) = 1 mole
Temperature (T) = 273 K
Gas constant (R) =?
PV = nRT
R = PV / nT
R = (760 × 22400) / (1 × 273)
R = 62358.97 mmHg.mL/Kmol
Volume (V) = 22.4 L
Pressure (P) = 760 mmHg
Number of mole (n) = 1 mole
Temperature (T) = 273 K
Gas constant (R) =?
PV = nRT
R = PV / nT
R = (760 × 22.4) / (1 × 273)
R = 62.359 mmHg.L/Kmol
Volume (V) = 22400 mL
Pressure (P) = 1 atm
Number of mole (n) = 1 mole
Temperature (T) = 273 K
Gas constant (R) =?
PV = nRT
R = PV / nT
R = (1 × 22400) / (1 × 273)
R = 82.05 atm.mL/Kmol
Volume (V) = 22.4 L
Pressure (P) = 1 atm
Number of mole (n) = 1 mole
Temperature (T) = 273 K
Gas constant (R) =?
PV = nRT
R = PV / nT
R = (1 × 22.4) / (1 × 273)
R = 0.0821 atm.L/Kmol
From the above illustrations, we can see that the gas constant will have a value for 0.0821 as long as other variables are: atm, L, K, mole
<span>Association of Tennis Professionals
hope this was help helpful <33</span>
Electron affinity is the energy released when an electron is accepted by a neutral atom forming a negative ion. Chlorine has the higher electron affinity because it readily accepts an electron to become more stable. On the other hand, sodium have to give up an electron to complete its valence shell.
Answer:
The number of valence electrons in an atom is reflected by its position in the periodic table of the elements (see the periodic table in the Figure below). Across each row, or period, of the periodic table, the number of valence electrons in groups 1–2 and 13–18 increases by one from one element to the next