Well we know the correct answer cannot be "a" bcause velocity is tangent to the circlular path of an object experienting centripical motion. Velocity DOES NOT point inward in centripical motion.
we know the correct answer cannot be "b" because "t" stands for "time" which cannot point in any direction. so, time cannot point toward the center of a circle and therefore this answer must be incorrect.
I would choose answer choice "c" because both force and centripical acceleration point toward the center of the circle.
I do not think answer choice "d" can be correct because the velocity of the mass moves tangent to the circle. velocity = (change in position) / time. Therefore, by definition the mass is moving in the direction of the velocity which does not point to the center of the circle.
does this make sense? any questions?
It is conduction. Rhejrjrjejehrhrhvrbrgr
Answer:
Best explains Jamming
Explanation:
<em>The deliberate radiation of electromagnetic (EM) energy to degrade or neutralize the radio frequency long-haul supervisory control and data acquisition (SCADA) communications links, best explains what?</em>
Jamming is defined as the blocking or interference with authorized wireless communications. it's a problem in personal area network wireless technologies. Jamming can occur inadvertently due to high levels of noise .
Jammers can send radio signals to interfere or disrupt communication flows by by decreasing the signal-to-noise ratio.They use radio frequency to interfere with communications by keeping it busy.
The answer should be B. a stable isotope to a decaying isotope.
Answer:
236.3 x
C
Explanation:
Given:
B(0)=1.60T and B(t)=-1.60T
No. of turns 'N' =100
cross-sectional area 'A'= 1.2 x
m²
Resistance 'R'= 1.3Ω
According to Faraday's law, the induced emf is given by,
ℰ=-NdΦ/dt
The current given by resistance and induced emf as
I = ℰ/R
I= -NdΦ/dtR
By converting the current to differential form(the time derivative of charge), we get
= -NdΦ/dtR
dq= -N dΦ/R
The change in the flux dФ =Ф(t)-Ф(0)
therefore, dq =
(Ф(0)-Ф(t))
Also, flux is equal to the magnetic field multiplied with the area of the coil
dq = NA(B(0)-B(t))/R
dq= (100)(1.2 x
)(1.6+1.6)/1.3
dq= 236.3 x
C