Answer:
Explanation:
First, let's review the ideal gas law, PV = nRT. In this equation, 'P' is the pressure in atmospheres, 'V' is the volume in liters, 'n' is the number of particles in moles, 'T' is the temperature in Kelvin and 'R' is the ideal gas constant (0.0821 liter atmospheres per moles Kelvin)
That makes the Earth, the Sun, and the rest of the solar system
<span>something like 23 thousand times as old as the human species !
</span><span>
</span>
Answer:
The cyanidin indicator turns blue within a pH range of 5 - 7. The pH of the solution could be 5, 6 or 7.
An indicator is used to determine the endpoint of a titration.
Explanation:
Cyanidin indicator changes colour with each change in pH. In acidic solutions (pH < 7) cyanidin indicator will turn red, through to purple and blue, while in basic solutions (pH > 7), cyanidin indicator will change colour from aquamarine through to green and yellow. The cyanidin indicator turns blue within a pH range of 5 - 7.
Titration is a technique used in analytical chemistry to determine the unknown concentration of a solution. A solution of known concentration is added from a burette to the solution of unknown concentration until the reaction between the two solutions is complete. This known as the endpoint of the experiment. The endpoint of a titration is determined using an indicator which is added to reaction mixture. A colour charge is produced by the indicator at the endpoint of the reaction.
Note: An indicator is a dye of weak organic acids or bases which changes colour with changes in the pH of a solution. Some common indicators are methyl orange, methyl red, phenolphthalein, etc. These indicators are used to monitor the changes in the pH of solutions during a reaction.
Answer: The concentration of the acid is 0.01 moles acid/0.040 L = 0.25 moles/L = 0.25 M
Explanation: