Answer:
(a) 
(b) 
(c) 
Explanation:
Hello,
(a) In this case, since entropy remains unchanged, the constant
should be computed for air as an ideal gas by:


Next, we compute the final temperature:

Thus, the work is computed by:

(b) In this case, since
is given, we compute the final temperature as well:

And the isentropic work:

(c) Finally, for isothermal, final temperature is not required as it could be computed as:

Regards.
Stack effect? I'm not totally sure about this...
Explanation:
Large amount of tiny particles of water droplets, dust and smoke are present on a misty day. These tiny particles in the air scatter blue colour of white light passing through it. When this scattered light reaches our eyes, the smoke appears blue.
The formula is m = D x V
D = <span>13.69 g/cm^3.
</span>V = <span>15.0 cm^3
the mass of the liquid mercury is m= </span>13.69 g/cm^3 x 15.0 cm^3 = 195g
the molar mass of Hg is 200,
1 mole of Hg = 200g Hg, so #mole of Hg= 195 / 200 = 0.97 mol
but we know that
1 mole = 6.022 E23 atoms
0.97 mole=?
6.022 E23 atoms x 0.97 / 1 mole = 5.84 E23 atoms
The mixture contains 62 % one isomer and 38 % the enantiomer.
Let’s say that the mixture contains 62 % of the (<em>R</em>)-isomer.
Then % (<em>S</em>) = 100 % -62 % = 38 %
ee = % (<em>R</em>) - % (<em>S</em>) = 62 % -38 % = 24 %