<em>Answer: </em>
tim e (t) = 20 min.
= 20 × 60 = 1200 s ,
Work ( W) = 4560000 J
= 4560 KJ ,
Determine:
Power output (P) = Work ÷ time
= 4560 ÷ 1200
<em> P = 3.8 KW</em>
Answer:
c) 100,000 m/s
Explanation:
You need to take the same wave length from the top graph and bottom one, so let's take half a wave length then in the top one that is 0.005, but in the bottom one it's 2000/4 = 500 because they are smaller and there are 4 half waves before you get to 2000, whereas in the top one there is 1 half wave before you get to 0.005 on the graph.
Now use speed = distance / time
speed = 500 / 0.005 = 100 000 m/s
Answer:
175 N/m
Explanation:
Given:
Force = F= 14.0 N
Distance = x = 8.00 cm = 0.08 m
To find:
spring constant
Solution:
spring constant is calculated by using Hooke's law:
k = F/x
Putting the values in above formula:
k = 14.0 / 0.08
k = 175 N/m
Answer:
The horizontal force is 106.89 N.
Explanation:
Given that,
Work done = 310 J
Distance = 2.9 m
We need to calculate the horizontal force
Using formula of work done

Where, 

Put the value into the formula



Hence, The horizontal force is 106.89 N.
Weight of the bus= mass x acceleration due to gravity = 1021x9.8 = 10005.8 N. Hope it helps.