From the question, The kinetic energy of the fired arrow is equal to the work done by the bale of hale in stopping the arrow.
We make use of the following formula
mv²/2 = F'd................... Equation 1
Where
- m = mass of the arrow
- v = velocity of the arrow
- F' = average stopping force acting on the arrow
- d = distance of penetration
Make F' the subject of the equation
F' = mv²/2d.................. Equation 2
From the question,
Given:
- m = 20 g = 0.02 kg
- v = 60 m/s
- d = 40 cm = 0.4 m
Substitute these values into equation 2
Hence, The average stopping force acting on the arrow is 90 N
Learn more about average stooping force here: brainly.com/question/13370981
Your answer is C)
a)t=2.78 sec
b)R=835.03 m
c)
Explanation:
Given that
h= 38 m
u=300 m/s
here given that
The finally y=0
So
t=2.78 sec
The horizontal distance,R
R= u x t
R=300 x 2.78
R=835.03 m
The vertical component of velocity before the strike
When electrons are lost a positive ion is formed. When electrons are gained, a negative ion is formed. I hope this helps
Answer:
The mechanical energy is converted to potential energy while the kinetic energy is zero
Explanation:
mechanical energy is the sum of potential energy and kinetic energy. It is the energy associated with the motion and position of an object. The total mechanical energy is the sum of these two forms of energy.
The Law of Conservation of Energy: Energy cannot be created or destroyed, but is merely changed from one form into another. This means that potential energy can become kinetic energy, or vice versa, but energy cannot “disappear”.
The mechanical energy is converted to potential energy while the kinetic energy is zero
Finding out the acceleration 12/3 = 4m/s^2
thus it is descending so the actual acceleration would be 9.8-4 = 5.8 m/s^2
the weight will be 90*5.8 = 522 N
522/9.8 = 53.2 kg