Charge= Protons- electrons
Charge= 35p-37e= -2
This Ion will have a charge of -2<span>. </span>
Answer:
Either Answer you Put is fine i put one as an answer and the other is the sample response and got it right.
My Answer: rather than typical sea floor rock, which had been shocked, melted, and ejected to the surface in minutes, and evidence of colossal seawater movement directly afterwards from sand deposits. Crucially the cores also showed a near complete absence of gypsum, a sulfate-containing rock, which would have been vaporized and dispersed as an aerosol into the atmosphere, confirming the presence of a probable link between the impact and global longer-term effects on the climate and food chain.
Sample Response:
Samples from the Western Hemisphere contained significantly higher amounts of shock-fractured quartz. This led Walter and Luis Alvarez to hypothesize that the asteroid impact site was in the Western Hemisphere.
Explanation:
First, calculate for the distance between the given points A and B by using the equation,
<span> D = sqrt ((x2 – x1)2 + (y2 – y1)2)</span>
Substitute the known values:
<span> D = sqrt((9 – 2)2 + (25 – 1)2)</span>
<span> D = 25 m</span>
I assume the unknown here is the time it would require for the particle to move from point A to B. This can be answered by dividing the calculated distance by the speed given above.
<span> t = (25 m)/ (50 m/s) = 0.5 s</span>
<span>Thus, it will take 0.5s for the particle to complete the route. </span>
Answer:
A) The continents and ocean basins undergo continuous change. Both are parts of lithospheric plates that move against each other. B) Divergent plate in Mid-Atlantic Ridge with material flowing into the ocean. C) A plate moved over a stationary site of magma upwelling "Hot Spot" and created a volcanic island chain over the time
Explanation:
A) The basic thought is, that instead of being permanent fixtures of the earth's surface, the continents and ocean basins undergo continuous change. Both are parts of lithospheric plates that move against each other, and in the process new crust is created at midoceanic ridges (spreading centers), and old crust is consumed at convergent plate boundaries (subduction zones).
B) There are basically three different types of plate boundaries:
Divergent boundaries -- where new crust is generated as the plates pull away from each other.
Convergent boundaries -- where crust is destroyed as one plate dives under another.
Transform boundaries -- where crust is neither produced nor destroyed as the plates slide horizontally past each other.
The best known of the divergent boundaries is the Mid-Atlantic Ridge. This submerged mountain range, which extends from the Arctic Ocean to beyond the southern tip of Africa, is but one segment of the global mid-ocean ridge system that encircles the Earth.
C) The linear arrangement of many seamounts indicates that they formed because the plate moved over a stationary site of magma upwelling, a so called mantle "Hot Spot". Seamounts are submarine volcanoes that may finally build above the water level, in which case they are called islands. If seamounts rise above sea level (due to buildup of material in a cone or upwelling mantle pushes up plate), they are subject to wave erosion and colonization by reefs, with both processes tending to create a flat top on the original volcanic cone.
Answer:
3.6km South East
Explanation:
Displacement is the shortest distance between the starting point and the ending point and the direction it is displaced in. To calculate the displacement we can use the pythagoras theorem because the 3km East and the 2km south form the two shorter sides of a right angled triangle between the starting and ending points. So, the displacement is the length C of the triangle which we can calculate as follows:
Pythagoras Theorem:
a^2+b^2=c^2
(2)^2+(3)^2=c^(2)
4+9=c^2
Square root 13 = c
c=3.6km (1dp)
The total displacement is 3.6km and is in the approximate direction of South East (because he travelled east and south).
Hope this helped!