Answer:
17
Explanation:
Step 1: Calculate the needed concentrations
[A]i = 1.00 mol/5.00 L = 0.200 M
[B]i = 1.80 mol/5.00 L = 0.360 M
[B]e = 1.00 mol/5.00 L = 0.200 M
Step 2: Make an ICE chart
A(aq) + 2 B(aq) ⇄ C(aq)
I 0.200 0.360 0
C -x -2x +x
E 0.200-x 0.360-2x x
Then,
[B]e = 0.360-2x = 0.200
x = 0.0800
The concentrations at equilibrium are:
[A]e = 0.200-0.0800 = 0.120 M
[B]e = 0.200 M
[C]e = 0.0800 M
Step 3: Calculate the concentration equilibrium constant (K)
K = [C] / [A] × [B]²
K = 0.0800 / 0.120 × 0.200² = 16.6 ≈ 17
The octet rule is a chemical rule of thumb that reflects observation that atoms of main-group elements tend to combine in such a way that each atom has eight electrons in its valence shell, giving it the same electronic configuration as a noble gas. The rule is especially applicable to carbon, nitrogen, oxygen, and the halogens, but also to metals such as sodium or magnesium.
The valence electrons can be counted using a Lewis electron dot diagram as shown at the right for carbon dioxide. The electrons shared by the two atoms in a covalent bond are counted twice, once for each atom. In carbon dioxide each oxygen shares four electrons with the central carbon, two (shown in red) from the oxygen itself and two (shown in black) from the carbon. All four of these electrons are counted in both the carbon octet and the oxygen octet.
Answer:
A. The sample's boiling point
Explanation:
Because by knowing boiling point we easily find a substance for example if given clear liquid boiling point is 100 c° we immediately know this is water.
Moreover boiling point is a fixed quantity for a substance.
Answer:
The answers to the questions are given below.
Explanation:
According to Le Chatelier's principle, if an external constrain such as change in concentration, temperature or pressure is imposed on a chemical system in equilibrium, the equilibrium will shift in order to neutralize the effect.
A. Effective of removing ammonia, NH3.
N2(g) + 3H2(g) ⇌ 2NH3(g)
Removing NH3 from the reaction simply means we are left with more reactants and no product. Therefore, the reactant will react to produce the product. Hence, the equilibrium position will shift to the right.
2. Effect of removing H2
N2(g) + 3H2(g) ⇌ 2NH3(g)
Remoing H2 simply means we have more products and less reactant. Therefore, the product will be convert to reactant. Hence, the equilibrium position will shift to the left.
C. Effect of adding a catalyst.
N2(g) + 3H2(g) ⇌ 2NH3(g)
Catalyst does not affect the equilibrium position. It only creates an alternative path to arrive at the product within a short time. Hence, it has no effect.
The smallest particle of a covalently bonded compound is an atom.