Answer:-
,
, ![[CO_3^2^-]=0.254M](https://tex.z-dn.net/?f=%5BCO_3%5E2%5E-%5D%3D0.254M)
Solution:- We are asked to calculate the molarity of sodium carbonate solution as well as the sodium and carbonate ions.
Molarity is moles of solute per liter of solution. We have been given with 6.73 grams of sodium carbonate and the volume of solution is 250.mL. Grams are converted to moles and mL are converted to L and finally the moles are divided by liters to get the molarity of sodium carbonate.
Molar mass of sodium carbonate is 105.99 gram per mol. The calculations for the molarity of sodium carbonate are shown below:

= 
So, molarity of sodium carbonate solution is 0.254 M.
sodium carbonate dissociate to give the ions as:

There is 1:2 mol ratio between sodium carbonate and sodium ion. So, the molarity of sodium ion will be two times of sodium carbonate molarity.
= 0.508 M
There is 1:1 mol ratio between sodium carbonate and carbonate ion. So, the molarity of carbonate ion will be equal to the molarity of sodium carbonate.
![[CO_3^2^-]=0.254M](https://tex.z-dn.net/?f=%5BCO_3%5E2%5E-%5D%3D0.254M)
Answer:
+3
Explanation:
Chlorine is anion with a -1 charge. But they are three chlorine atoms.
-1 * 3 = -3
So they have a -3 charge.
So to balance the compound, the nickel has to be a cation with a +3 charge.
-3 + 3 = 0
Furthermore, a chemical bond always has a 0 charge. Remember that.
Hope it helped! Rate my answer a 5 star if correct.
Answer:
<h2>67%</h2>
Explanation:
<h2>Thus the % composition of glucose by mass is carbon 40.0 % oxygen 53.3 % hydrogen 6.7 % in this way, the % composition by mass of any compound can be calculated provided that is formed is known. </h2>
I think It’s 55 but that’s just me
The type of energy used is kinetic energy. Kinetic energy is the energy of motion.