♂️4️⃣gshjrhdbsbdjsjdbsnebrbsbxinanevrskiswnnwsjjebrhedifi
Answer:
The mass of the reactants compared with the mass of the products should be the same if the reactants are in stoichiometric amounts.
Explanation:
In this question, they ask about chemical reactions and the comparison of the mass of reactants and products. Firstly, it is necessary to introduce the mass conservation principle.
Mass conservation principle mentions that in a chemical reaction, the total mass of reactants is equal to the total mass of products (if the reaction is fully developed). It means mass is not created or destroyed, only transforms from reactants to products.
For example, the mass of sodium plus the mass of chlorine that reactswith the sodium equals the mass of the product sodium chloride.Because atoms are only rearranged in a chemical reaction, there mustbe the same number of sodium atoms and chlorine atoms in both thereactants and products.
Finally, we can conclude that The mass of the reactants compared with the mass of the products should be the same if the reactants are in stoichiometric amounts.
Answer:
1.047 M
Explanation:
The given reaction:

For dichromate :
Molarity = 0.254 M
Volume = 15.8 mL
The conversion of mL to L is shown below:
1 mL = 10⁻³ L
Thus, volume = 15.8 ×10⁻³ L
Thus, moles of dichromate :

Moles of dichromate = 0.0040132 moles
1 mole of dichromate react with 6 moles of iron(II) solution
Thus,
0.0040132 moles of dichromate react with 6 × 0.0040132 moles of iron(II) solution
Moles of iron(II) solution = 0.02408 moles
Volume = 23 mL = 0.023 L
Considering:

<u>Molarity = 0.02408 / 0.023 = 1.047 M</u>
Answer: c = 710 J/kg°C or 0.71 J/g°C
Explanation: Heat is expressed in the formula Q = mc∆T. Derive to find the specific heat c. So the formula will become c = Q / m∆T
c = Q / m∆T
= 42600 J / 2 kg ( 55°C - 25°C )
= 710 J /kg°C
Or can be expressed by converting kg to g.
c = 0.71 J /g°C