Answer: A cold front occurs when a cold air mass advances into a region occupied by a warm air mass. If the boundary between the cold and warm air masses doesn't move, it is called a stationary front.
Explanation: Two types of occluded front exist: the warm-type and the cold-type. They’re distinguished by the relative temperatures of the air mass ahead of the occlusion – in other words, the air mass ahead of the original warm front – and the air mass behind the cold front. If the air behind the cold front is colder than the air ahead of the occlusion, it shoves beneath that air (because it’s denser) to form a cold-type occluded front. If the air behind the cold front is warmer than the air ahead, it rides over it to form a warm-type occluded front – which appears to be the more common case. In either situation, the lighter warm air representing the air mass originally between the warm and cold fronts sits above the boundary between the two cooler air masses.
Hope this helps!!
<u>We are given:</u>
constant speed of the car (u) = 36.12 m/s
time in question (t) = 12 seconds
<u>Solving for the Distance and Displacement:</u>
from the second equation of motion:
s = ut + 1/2 at^2
since we have 0 acceleration:
s = ut
<em>replacing the variables</em>
s = 36.12 * 12
s = 433.44 m
Since the car is travelling in a straight line towards the same direction, it's Distance will be equal to its Displacement
Hence, both the Displacement and <u>Distance covered by the car is </u>
<u>433.44 m</u>
but since Displacement also has a direction vector along with it,
the <u>Displacement will be 433.44 m due west</u>
Power = voltage x current
12v x 50A = 600 watts