Answer:
The temperature of the strip as it exits the furnace is 819.15 °C
Explanation:
The characteristic length of the strip is given by;

The Biot number is given as;

< 0.1, thus apply lumped system approximation to determine the constant time for the process;

The time for the heating process is given as;

Apply the lumped system approximation relation to determine the temperature of the strip as it exits the furnace;

Therefore, the temperature of the strip as it exits the furnace is 819.15 °C
Answer:
B false it is illegal to only have got fog lights on though and bright headlights because it can distract other drivers going last and if the y are distracted then that will cause a collision
Hope this helps :)
Explanation:
Answer:
a) 24 kg
b) 32 kg
Explanation:
The gauge pressure is of the gas is equal to the weight of the piston divided by its area:
p = P / A
p = m * g / (π/4 * d^2)
Rearranging
p * (π/4 * d^2) = m * g
m = p * (π/4 * d^2) / g
m = 1200 * (π/4 * 0.5^2) / 9.81 = 24 kg
After the weight is added the gauge pressure is 2.8kPa
The mass of piston plus addded weight is
m2 = 2800 * (π/4 * 0.5^2) / 9.81 = 56 kg
56 - 24 = 32 kg
The mass of the added weight is 32 kg.
Answer:
Amount of concrete need to make slab = 1,500 feet³
Explanation:
Given:
Length of slab = 50 feet
Width of slab = 30 feet
Height of slab = 1 feet
Find:
Amount of concrete need to make slab
Computation;
Amount of concrete need to make slab = Volume of cuboid
Volume of cuboid = (l)(b)(h)
Amount of concrete need to make slab = (50)(30)(1)
Amount of concrete need to make slab = 1,500 feet³
Answer:
a. 0.28
Explanation:
Given that
porosity =30%
hydraulic gradient = 0.0014
hydraulic conductivity = 6.9 x 10⁻4 m/s
We know that average linear velocity given as



The velocity in m/d ( 1 m/s =86400 m/d)
v= 0.27 m/d
So the nearest answer is 'a'.
a. 0.28