Heat supplied to the gold will raise the temperature of the gold from 20 degree Celsius to 90 degree Celsius.
Mass of the gold (m) = 0.072 kg
Temperature change (ΔT) = 90 - 20 = 70 degree Celsius
Specific heat capacity of the gold (c) = 136 J/kg C
Heat supplied = m × c × ΔT
Heat supplied = 0.072 × 136 × 70
Heat supplied = 685.44 Joules
Hence, the heat supplied to the gold to raise the temperature from 20 degree Celsius to 90 degree Celsius = 685.44 Joules
Answer:

Given:
Mass of the polar bear (m) = 6.8 kg
Speed of the polar bear (v) = 5.0 m/s
To Find:
Kinetic energy of the polar bear (KE)
Explanation:
Formula:

Substituting values of m & v in the equation:





Kinetic energy of the polar bear (KE) = 23002.1 J
The correct answer is Option (C) distance and time
Explanation:
Average speed of any object is defined as the total distance that object travels over the time it takes to travel that distance. In other words, average speed is the total distance divided by the elapsed time.

Therefore, as you can see in the above equation, the two measurements that are essential for the calculation of the average speed are the (total) distance and the (elapsed) time.
Hence, the correct option is C.
Answer:
The specific latent heat (L) of a material is a measure of the heat energy (Q) per mass (m) released or absorbed during a phase change.
It's defined through the formula Q = mL.
Explanation: