it is just a matter of integration and using initial conditions since in general dv/dt = a it implies v = integral a dt
v(t)_x = integral a_{x}(t) dt = alpha t^3/3 + c the integration constant c can be found out since we know v(t)_x at t =0 is v_{0x} so substitute this in the equation to get v(t)_x = alpha t^3 / 3 + v_{0x}
similarly v(t)_y = integral a_{y}(t) dt = integral beta - gamma t dt = beta t - gamma t^2 / 2 + c this constant c use at t = 0 v(t)_y = v_{0y} v(t)_y = beta t - gamma t^2 / 2 + v_{0y}
so the velocity vector as a function of time vec{v}(t) in terms of components as[ alpha t^3 / 3 + v_{0x} , beta t - gamma t^2 / 2 + v_{0y} ]
similarly you should integrate to find position vector since dr/dt = v r = integral of v dt
r(t)_x = alpha t^4 / 12 + + v_{0x}t + c let us assume the initial position vector is at origin so x and y initial position vector is zero and hence c = 0 in both cases
r(t)_y = beta t^2/2 - gamma t^3/6 + v_{0y} t + c here c = 0 since it is at 0 when t = 0 we assume
r(t)_vec = [ r(t)_x , r(t)_y ] = [ alpha t^4 / 12 + + v_{0x}t , beta t^2/2 - gamma t^3/6 + v_{0y} t ]
Answer:
v = 0.489 m/s
Explanation:
It is given that,
Mass of a box, m = 1.5 kg
The compression in the spring, x = 6.5 cm = 0.065 m
Let the spring constant of the spring is 85 N/m
We need to find the velocity of the box (v) when it hit the spring. It is based on the conservation of energy. The kinetic energy of spring before collision is equal to the spring energy after compression i.e.


So, the speed of the box is 0.489 m/s.
The helium may be treated as an ideal gas, so that
(p*V)/T =constant
where
p = pressure
V = volume
T = temperature.
Note that
7.5006 x 10⁻³ mm Hg = 1 Pa
1 L = 10⁻³ m³
Given:
At ground level,
p₁ = 752 mm Hg
= (752 mm Hg)/(7.5006 x 10⁻³ mm Hg/Pa)
= 1.0026 x 10⁵ Pa
V₁ = 9.47 x 10⁴ L = (9.47 x 10⁴ L)*(10⁻³ m³/L)
= 94.7 m³
T₁ = 27.8 °C = 27.8 + 273 K
= 300.8 K
At 36 km height,
P₂ = 73 mm Hg = 73/7.5006 x 10⁻³ Pa
= 9.7326 x 10³ Pa
T₂ = 235 K
If the volume at 36 km height is V₂, then
V₂ = (T₂/p₂)*(p₁/T₁)*V₁
= (235/9.7326 x 10³)*(1.0026 x 10⁵/300.8)*94.7
= 762.15 m³
Answer: 762.2 m³
Answer:
The correct answer is Option A.
The moon has a small amount of gravity. Low tides mean the moon is not pulling on the water. High tides mean that the moon is pulling on the water.