Answer:
The correct option is;
D) The force exerted on the astronaut by Earth is equal to the force exerted on Earth by the astronaut
Explanation:
According to Newton's third law of motion, in nature, for every action, there is an equal and opposite reaction, such that if a first object exerts a certain amount of force on a second object, the second object will exert a force of equal magnitude and opposite direction to that exerted by the first object
Therefore, the gravitational force exerted by Earth on the astronaut, is equal to the force exerted by the astronaut on Earth.
Answer:
2 m = E / c^2 where m is mass of electron
E = h v where v is the frequency ( nu) of the incident photon
E = h c / y where y is the incident wavelength (lambda)
2 m = h / (c y)
y = h / (2 m c) wavelength required
y = 6.62 * 10E-34 / (2 * 9.1 * 10E-31 * 3 * 10E8) m
y = 3.31 / 27.3 E-11 m
y = 1.21 E -12 m = .0121 Angstrom units
Venus shares a similar size, surface composition, and has an atmosphere with a complex weather system. Venus is different from Earth because it spins the opposite direction of Earth and it’s rotation is very slow.
An experimental design is used to assign variables for testing. In contrast to a control design where nothing is changed, the experimental design allows you to test various new inputs to see how they would vary from the original results.