Answer:
Step On: Your foot forces the clutch pedal down and then causes it to take up the slack. This, in turn, causes the clutch friction disk to slip, creating heat and ultimately wearing your clutch out.
Step Off: When the clutch pedal is released, the springs of the pressure plate push the slave cylinder's pushrod back, which forces the hydraulic fluid back into the master cylinder.
Answer:
The resistance is 24.9 Ω
Explanation:
The resistivity is equal to:

The area is:
A = 60 * 60 = 3600 um² = 0.36x10⁻⁴cm²

If NA is greater, then, the term 1/NA can be neglected, thus the equation:

Where
V = 0.44 V
E = 11.68*8.85x10¹⁴ f/cm


The length is:
L = 10 - 0.335 = 9.665 um
The resistance is:

Question:Technician A say's that The most two-stroke engines have a pressure type lubrication system. Technician be says that four stroke engines do not require the mixing of oil with gasoline
. Which of them is correct ?
Answer: Technician B is correct
Explanation: Two types of engines exist , the two stroke (example, used in chainsaws) is a type of engine that uses two strokes--a compression stroke and a return stroke to produce power in a crankshaft combustion cycle and the four stroke engines(eg lawnmowers) which uses four strokes, 2-strokes during compression and exhaustion accompanied by 2 return strokes for each of the initial process to produce power in a combustion cycle.
While a 2 stroke system engine, requires mixing of oil and fuel to the crankshaft before forcing the mixture into the cylinder and do not require a pressurized system. The 4 stroke system uses a splash and pressurized system where oil is not mixed with gasoline but drawn from the sump and directed to the main moving parts of crankshaft through its channels.
We can therefore say that Technician A is wrong while Technician B is correct
Answer:
5.328Ibm/hr
Explanation:
Through laboratory tests, thermodynamic tables were developed, these allow to know all the thermodynamic properties of a substance (entropy, enthalpy, pressure, specific volume, internal energy etc ..)
through prior knowledge of two other properties such as pressure and temperature.
for this case we can define the following equation for mass flow using the first law of thermodynamics

where
Q=capacity of the radiator =5000btu/hr
m = mass flow
then using thermodynamic tables we found entalpy in state 1 and 2
h1(x=0.97, p=16psia)=1123btu/lbm
h2(x=0, p=16psia)=184.5btu/lbm
solving
