Answer: the process of photosynthesis is commonly written as: 6CO2 + 6H2O → C6H12O6 + 6O2. This means that the reactants, six carbon dioxide molecules and six water molecules, are converted by light energy captured by chlorophyll (implied by the arrow) into a sugar molecule and six oxygen molecules, the products.
Explanation:
The hydrogens and oxygen of a water molecule are held together by covalent bonds.
<h3>
What are covalent bonds?</h3>
A covalent bond is an electron exchange that causes the production of electron pairs between atoms. Covalent bonding is a stable equilibrium of the attractive and repulsive forces between two atoms that occurs when they share electrons.
Bonding pairs or sharing pairs are other names for these electron pairs. Because electrons are shared among several molecules, each atom can reach the equivalent of a full valence shell, resulting in a stable electronic state.
In organic chemistry, covalent bonds are much more common than ionic bonds. Covalent bonds unite the atoms in a single water molecule, whereas hydrogen bonds join two water molecules. Water develops a covalent bond when oxygen shares an electron with each hydrogen atom.
To know more about covalent bonds, refer:
brainly.com/question/3447218
#SPJ4
Answer : The concentration of
is, 0.12 M
Explanation :
Using Henry's law :

where,
= concentration of
= ?
= partial pressure of
= 4.5 atm
= Henry's law constant = 
Now put all the given values in the above formula, we get:


Thus, the concentration of
is, 0.12 M
<span>Answer is: the mass of hydrogen is 22,05 grams.
m(</span>Al(C₂H₃O₂)₃)<span> = 500 g.
M</span>(Al(C₂H₃O₂)₃) = 27 + 6 ·12 + 9 · 1 + 6 · 16 · g/mol = 204 g/mol.<span>
n</span>(Al(C₂H₃O₂)₃) = m(Al(C₂H₃O₂)₃) ÷ M(Al(C₂H₃O₂)₃).
n(Al(C₂H₃O₂)₃) = 500 g ÷ 204 g/mol.
n(Al(C₂H₃O₂)₃) = 2,45 mol.
n(Al(C₂H₃O₂)₃) : n(H) = 1 : 9.
n(H) = 22,05 mol.
m(H) = 22,05 mol · 1 g/mol
m(H) = 22,05 g.