Answer:
The correct answer is 2.75 grams of HCl.
Explanation:
The given balanced equation is:
CaCO₃ (s) + 2HCl (aq) ⇒ CaCl₂ (aq) + H₂O (l) + CO₂ (g)
Based on the given information, one mole of calcium carbonate is reacting with two moles of HCl. The molecular mass of HCl is 36.5 grams, thus, the mass of 2 moles of HCl will be, 36.5 × 2 = 73 grams
The molecular mass of CaCO₃ is 100 gram per mole, that is, the mass of 1 mole of CaCO₃ is 100 grams, therefore, the mass of HCl required for reacting with 3.75 grams of CaCO₃ will be,
= 3.75 × 2 × 36.5 / 100 = 2.74 grams of HCl.
Answer:
None
Explanation:
Methylene is an organic compound and organic compounds consist of hydrogen atoms and Carbon atoms in n this case Methylene(CH2) has one carbon and two hydrogens .
Answer:
Energy is moved from areas of surplus to those of deficit, with warm currents transporting warm water polewards and cold currents taking colder water to lower latitudes. It holds onto this heat for longer than the land does and the ocean currents move this heat around, from the tropics to higher latitudes.
Answer: The final temperature in Kelvin is 1488
Explanation:
To calculate the final temperature of the system, we use the equation given by Gay-Lussac Law. This law states that pressure of the gas is directly proportional to the temperature of the gas at constant pressure.
Mathematically,

where,
are the initial pressure and temperature of the gas.
are the final pressure and temperature of the gas.
We are given:

Putting values in above equation, we get:

Hence, the final temperature in Kelvin is 1488