Answer:
a)- True
Explanation:
If two statements are inconsistent with each other it means that they are not telling the same, if they are not telling the same it means that only one of them COULD be true, but there is a third option where the two statements are wrong and non statement is telling the true...so:
If we have two statements inconsistent with each other, AT LEAST one of the statements is false.
Answer:
oh I am sorry I can't understand your question.
Answer:
the base-emitter junction is open and the emitter resistor is open
Explanation:
Because here there will be no base current only when the the base emitter junction is kept open and. Also when emitter resistor is kept open or with thus there will be no voltage drop across the Resistor meaning the base voltage Will be equal to that in the voltage divider circuitry
Answer:
(a) The mean time to fail is 9491.22 hours
The standard deviation time to fail is 9491.22 hours
(b) 0.5905
(c) 3.915 × 10⁻¹²
(d) 2.63 × 10⁻⁵
Explanation:
(a) We put time to fail = t
∴ For an exponential distribution, we have f(t) = 
Where we have a failure rate = 10% for 1000 hours, we have(based on online resource);

e^(1000·λ) - 0.1·e^(1000·λ) = 1
0.9·e^(1000·λ) = 1
1000·λ = ㏑(1/0.9)
λ = 1.054 × 10⁻⁴
Hence the mean time to fail, E = 1/λ = 1/(1.054 × 10⁻⁴) = 9491.22 hours
The standard deviation = √(1/λ)² = √(1/(1.054 × 10⁻⁴)²)) = 9491.22 hours
b) Here we have to integrate from 5000 to ∞ as follows;
![p(t>5000) = \int\limits^{\infty}_{5000} {\lambda e^{-\lambda t}} \, dt =\left [ -e^{\lambda t}\right ]_{5000}^{\infty} = e^{5000 \lambda} = 0.5905](https://tex.z-dn.net/?f=p%28t%3E5000%29%20%3D%20%5Cint%5Climits%5E%7B%5Cinfty%7D_%7B5000%7D%20%7B%5Clambda%20e%5E%7B-%5Clambda%20t%7D%7D%20%5C%2C%20dt%20%3D%5Cleft%20%5B%20%20-e%5E%7B%5Clambda%20t%7D%5Cright%20%5D_%7B5000%7D%5E%7B%5Cinfty%7D%20%3D%20e%5E%7B5000%20%5Clambda%7D%20%3D%200.5905)
(c) The Poisson distribution is presented as follows;

p(x = 3) = 3.915 × 10⁻¹²
d) Where at least 2 components fail in one half hour, then 1 component is expected to fail in 15 minutes or 1/4 hours
The Cumulative Distribution Function is given as follows;
p( t ≤ 1/4)
.