Answer:
6.57 m/s
Explanation:
First use Hook's Law to determine the F the compressed spring acts on the mass. Hook's Law F=kx; F=force, k=stiffnes of spring (or spring constant), x=displacement
F=kx; F=180(.3) = 54 N
Next from Newton's second law find the acceleration of the mass.
Newton's .2nd law F=ma; a=F/m ; a=54/.75 = 72m/s²
Now use the kinematic equation for velocity (or speed)
v₂²= v₀² + 2a(x₂-x₀); v₂=final velocity; v₀=initial velocity; a=acceleration; x₂=final displacement; x₀=initial displacment.
v₀=0, since the mass is at rest before we release it
a=72 m/s² (from above)
x₀=0 as the start position already compressed
x₂=0.3m (this puts the spring back to it's natural length)
v₂²= 0 + 2(72)(0.3) = 43.2 m²/s²
v₂=
= 6.57 m/s
The first one it's very windy today and will rain later.
Answer:

Explanation:
What is said is that the meter fell d=18.3cm=0.183m under the action of gravity. We can use the formula for accelerated motion:

Since it departed from rest it will mean that:

So our time will be:

Which for our values is:

Answer:
A
Explanation:
As an object gets hotter the faster the molecules go
Explanation:
Acceleration. Angular acceleration: Is the rate of change of the angular velocity of a body with respect to time.
Force. Torque: Is also called rotational force, since an applied torque will change the rotational motion of a body.
Mass. Moment of inertia: It is the resistance that opposes a body to rotates.
Work. Work: In a rotational motion, the work is done by the torque.
Translational kinetic energy. Rotational kinetic energy: is the kinetic energy due to the rotational motion of a body.
Linear momentum. Angular momentum: Represents the quantity of rotational motion of a body.
Impulse. Angular impulse: Is the change in angular momentum of a body.