Answer:
Explanation:
STEP 1
<u>Given</u>
Radius of cylinder = r = 25cm, 2.5m
mass = 27kg
cylinder is mounted so as to rotate freely about a horizontal axis that is parallel to and 60cm to the central logitudinal axis of the cylinder
height = 0.6m
<u>part 1</u>
The cylinder is mounted so as to rotate freely about a horizontal axis tha is paralle to 60cm from the central longitudinal axis of then cylinder. The rotational inertia of the cylinder about the axis of rotation is given by
<em>I = Icm + mh²</em>
<em>∴ I = 1/2mr² + mh² = 1/2x27x (0.5)² + 20 x (0.6)²</em>
<em>I=13.09kg.m²</em>
where
<em>I</em>cm is the rotational inertia of the cylinder about its central axis
m is the mass of the cylinder
h is the distance between the axis of the rotation and the central axis of the cylinder
r is the radius of the cylinder
<em> </em><em> I=13.09kg.m²</em>
<em>part2</em>
<em>from the conservation of the total mechanical energy of the meter stick, the change in gravitational potential energyof the meter stick plus the change in kinetic energy must be zero</em>
<em>Δk + Δu = 0</em>
<em>1/2 </em>I(w²-w²) = Ui-Uf
1/2 x 13.09w² = mgh
∴w=√20 x 9.8 x 0.6/(1/2 x 13.09) =117.6/6.5
w=18.09rad/s
Answer:
The velocity at the nozzle at inlet
= 3584 
Explanation:
Pressure at inlet
= 1 ×
Pa
Temperature at inlet
= 518 ° c = 791 K
Mass flow rate =
= 88.7
Gas constant for carbon die oxide is R = 189 
Mass flow rate inside the nozzle is given by the formula =
×
×
⇒
= = 1 ×
Pa
⇒ R
= 791 × 189 = 149499 
⇒
= 0.0037 
Put all the above values in above formula we get,
⇒ 88.7 =
× 0.0037 × 
⇒
= 3584 
This is the velocity at the nozzle at inlet.
Answer:

Explanation:
As we know that the magnetic field near the center of solenoid is given as

now we know that initially the length of the solenoid is L = 18 cm and N number of turns are wounded on it
So the magnetic field at the center of the solenoid is 2 mT
now we pulled the coils apart and the length of solenoid is increased as L = 21 cm
so we have

now plug in all values in it


<span>Rising or falling, it does not change.</span>
Is potential energy that results from conservative Coulomb forces and is associated with the configuration of a particular set of point charges within a defined system