Answer: Time needed: 2.5 s
Distance covered: 31.3 m
Explanation:
I'll start with the distance covered while decelerating. Since you know that the initial speed of the car is 15.0 m/s, and that its final speed must by 10.0 m/s, you can use the known acceleration to determine the distance covered by
on one side of the equation and solve by plugging your values
To get the time needed to reach this speed, i.e. 10.0 m/s, you can use the following equation
Explanation:
As wavelength increases so does frequency
Explanation:
Principle Quantum Numbers : It describes the size of the orbital and the energy level. It is represented by n. Where, n = 1,2,3,4....
Azimuthal Quantum Number : It describes the shape of the orbital. It is represented as 'l'. The value of l ranges from 0 to (n-1). For l = 0,1,2,3... the orbitals are s, p, d, f...
s = 1 orbital
p = 3 orbitals
d = 5 orbitals
f = 7 orbitals
For n = 4
l = 0 to (n-1) = 0 to 3 = (4s , 4p , 4d , 4f)
Number of subshells = 4
Number of orbitals = 1 + 3 + 5 + 7 = 16
The maximum number of electrons the n = 4 shell can contain:
Each orbital can holds upto two electrons, then 16 orbitals will have :

32 is the maximum number of electrons the n = 4 shell can contain
Answer: O2+6H12O6=CO2+ENERGY(ATP)
I DON'T THINK SHE IS CORRECT
Explanation: