Answer:
B
Explanation:
Transformation of energy involves conversion of energy from one form to another for example our movement around involves the conversion of chemical energy stored in the food we eat to other forms of energy such as kinetic energy for the movement, electrical energy in the neurons for impulses and others
The ball posses gravitational potential energy since it is held at a displacement to the ground ( zero point) and when released, the gravitational potential energy is converted to kinetic energy which leads to the fall of the ball until it is at zero displacement to the earth. The board likewise when bent to its maximum extent stored elastic potential energy as a result of the partial displacement of its constituent particle provided it is not stretch beyond its elastic limit which can lead to deformation of the board and the elastic potential energy lost.
Throw it sideways and try to make it spin around but it needs to be thrown high up then it should kinda glide down
I’m pretty sure the answer is C. Any change of state or movement requires energy
There's no such thing as "stationary in space". But if the distance
between the Earth and some stars is not changing, then (A) w<span>avelengths
measured here would match the actual wavelengths emitted from these
stars. </span><span>
</span><span>If a star is moving toward us in space, then (A) Wavelengths measured
would be shorter than the actual wavelengths emitted from that star.
</span>In order to decide what's actually happening, and how that star is moving,
the trick is: How do we know the actual wavelengths the star emitted ?
Given:
The thermal energy added to the system is Q = 90 J
The work done by the system on the surroundings is W = 30 J
To find the change in internal energy.
Explanation:
According to the first law of thermodynamics, the change in internal energy can be calculated by the formula

On substituting the values, the change in internal energy will be

Final Answer: The chage in internal energy is 60 J (option D)