Answer:
Avogadro's number
Explanation:
Avogadro number:
The given problem will solve by using Avogadro number.
It is the number of atoms , ions and molecules in one gram atom of element, one gram molecules of compound and one gram ions of a substance.
The number 6.022 × 10²³ is called Avogadro number.
It means 1 mole of any substance contain 6.022 × 10²³ number of representative particles.
For example,
18 g of water = 1 mole = 6.022 × 10²³ molecules of water
35.45 g Cl⁻ = 1mole = 6.022 × 10²³ Cl⁻ ions
1.008 g of hydrogen = 1 mole = 6.022 × 10²³ atoms of hydrogen
Answer:
6.022 x 10^23
Explanation:
There are 20 zeros and the 022 are 3 more places.
Answer:
Prokaryotes are organisms made up of cells that lack a cell nucleus or any membrane-encased organelles. Eukaryotes are organisms made up of cells that possess a membrane-bound nucleus that holds genetic material as well as membrane-bound organelles.
Explanation:
Answer:
I. Changing the pressure:
Increasing the pressure: the amount of H₂S(g) will increase.
Decreasing the pressure: the amount of H₂S(g) will decrease.
II. Changing the temperature:
Increasing the temperature: the amount of H₂S(g) will decrease.
Decreasing the temperature: the amount of H₂S(g) will increase.
III. Changing the H₂ concentration:
Increasing the H₂ concentration: the amount of H₂S(g) will increase.
Decreasing the H₂ concentration: the amount of H₂S(g) will decrease.
Explanation:
Le Châtelier's principle states that when there is an dynamic equilibrium, and this equilibrium is disturbed by an external factor, the equilibrium will be shifted in the direction that can cancel the effect of the external factor to reattain the equilibrium.
I. Changing the pressure:
When there is an increase in pressure, the equilibrium will shift towards the side with fewer moles of gas of the reaction. And when there is a decrease in pressure, the equilibrium will shift towards the side with more moles of gas of the reaction.
For the reaction: CH₄(g) + 2H₂S(g) ⇄ CS₂(g) + 4H₂(g),
The reactants side (left) has 3.0 moles of gases and the products side (right) has 5.0 moles of gases.
Increasing the pressure: will shift the reaction to the side with lower moles of gas (left side), amount of H₂S(g) will increase.
Decreasing the pressure: will shift the reaction to the side with lower moles of gas (right side), amount of H₂S(g) will decrease.
II. Changing the temperature
The reaction is endothermic since the sign of ΔH is positive.
So the reaction can be represented as:
CH₄(g) + 2H₂S(g) + heat ⇄ CS₂(g) + 4H₂(g).
Increasing the temperature:
The T is a part of the reactants, increasing the T increases the amount of the reactants. So, the reaction will be shifted to the right to suppress the effect of increasing T and the amount of H₂S(g) will decrease.
Decreasing the temperature:
The T is a part of the reactants, increasing the T decreases the amount of the reactants. So, the reaction will be shifted to the left to suppress the effect of decreasing T and the amount of H₂S(g) will increase.
III. Changing the H₂ concentration:
H₂ is a part of the products.
Increasing the H₂ concentration:
H₂ is a part of the products, increasing H₂ increases the amount of the products. So, the reaction will be shifted to the left to suppress the effect of increasing H₂ and the amount of H₂S(g) will increase.
Decreasing the H₂ concentration:
H₂ is a part of the products, decreasing H₂ decreases the amount of the products. So, the reaction will be shifted to the right to suppress the effect of decreasing H₂ and the amount of H₂S(g) will decrease.
Answer:
Option B. 4.74×10¯¹⁹ J.
Explanation:
The following data were obtained from the question:
Wavelength (λ) = 4.2×10¯⁷ m
Energy (E) =.?
Next, we shall determine the frequency of the wave. This can be obtained as follow:
Wavelength (λ) = 4.2×10¯⁷ m
Velocity (v) = constant = 3×10⁸ m/s
Frequency (f) =.?
v = λf
3×10⁸ = 4.2×10¯⁷ × f
Divide both side by 4.2×10¯⁷
f = 3×10⁸ / 4.2×10¯⁷
f = 7.143×10¹⁴ s¯¹
Therefore, the frequency of the wave is 7.143×10¹⁴ s¯¹.
Finally, we shall determine the energy of the wave using the following formula
E = hf
Where
E is the energy.
h is the Planck's constant
f is the frequency
Thus, the enery of the wave can be obtained as follow:
Frequency (f) = 7.143×10¹⁴ s¯¹.
Planck's constant = 6.63×10¯³⁴ Js
Energy (E) =..?
E = hf
E = 6.63×10¯³⁴ × 7.14×10¹⁴
E = 4.74×10¯¹⁹ J
Therefore, the energy of the wave is 4.74×10¯¹⁹ J.