1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nostrana [21]
3 years ago
9

The maximum amount of pulling force a truck can apply when driving on

Physics
1 answer:
DochEvi [55]3 years ago
4 0

Answer:

8760 N

Explanation:

think this is the right answer :)

You might be interested in
May you help me answer this​
Firdavs [7]

1) See three Kepler laws below

2a) Acceleration is 2.2 m/s^2

2b) Tension in the string: 27.4 N

3a) Kinetic energy is the energy of motion, potential energy is the energy due to the position

3b) The kinetic energy of the object is 2.25 J

Explanation:

1)

There are three Kepler's law of planetary motion:

  1. 1st law: the planets orbit the sun in elliptical orbits, with the Sun located at one of the 2 focii
  2. 2nd law: a segment connecting the Sun with each planet sweeps out equal areas in equal time intervals. A direct consequence of this is that, when a planet is further from the sun, it travels slower, and when it is closer to the sun, it travels faster
  3. 3rd law: the square of the period of revolution of a planet around the sun is directly proportional to the cube of the semi-major axis of its orbit. Mathematically, T^2 \propto r^3, where T is the period of revolution and r is the semi-major axis of the orbit

2a)

To solve the problem, we have to write the equation of motions for each block along the direction parallel to the incline.

For the block on the right, we have:

M g sin \theta - T = Ma (1)

where

Mg sin \theta is the component of the weight of the block parallel to the incline, with

M = 8.0 kg (mass of the block)

g=9.8 m/s^2 (acceleration of gravity)

\theta=35^{\circ}

T = tension in the string

a = acceleration of the block

For the block on the left, we have similarly

T-mg sin \theta = ma (2)

where

m = 3.5 kg (mass of the block)

\theta=35^{\circ}

From (2) we get

T=mg sin \theta + ma

Substituting into (1),

M g sin \theta - mg sin \theta - ma = Ma

Solving for a,

a=\frac{M-m}{M+m}g sin \theta=\frac{8.0-3.5}{8.0+3.5}(9.8)(sin 35^{\circ})=2.2 m/s^2

2b)

The tension in the string can be calculated using the equation

T=mg sin \theta + ma

where

m = 3.5 kg (mass of lighter block)

g=9.8 m/s^2

\theta=35^{\circ}

a=2.2 m/s^2 (acceleration found in part 2)

Substituting,

T=(3.5)(9.8)(sin 35^{\circ}) +(3.5)(2.2)=27.4 N

3a)

The kinetic energy of an object is the energy due to its motion. It is calculated as

K=\frac{1}{2}mv^2

where

m is the mass of the object

v is its speed

The potential energy is the energy possessed by an object due to its position in a gravitational field. For an object near the Earth's surface, it is given by

U=mgh

where

m is the mass of the object

g is the strength of the gravitational field

h is the heigth of the object relative to the ground

3b)

The kinetic energy of an object is given by

K=\frac{1}{2}mv^2

where

m is the mass of the object

v is its speed

For the object in this problem,

m = 500 g = 0.5 kg

v = 3 m/s

Substituting, we find its kinetic energy:

K=\frac{1}{2}(0.5)(3)^2=2.25 J

Learn more about acceleration and forces:

brainly.com/question/11411375

brainly.com/question/1971321

brainly.com/question/2286502

brainly.com/question/2562700

And about kinetic energy:

brainly.com/question/6536722

#LearnwithBrainly

7 0
3 years ago
Trucks can be run on energy stored in a rotating flywheel, with an electric motor getting the flywheel up to its top speed of 20
Genrish500 [490]

Answer:

The time it can operate between chargins in minutes is

t=102.8 minutes

Explanation:

Given: m=500kg, r=1.0m, w=200\pi rad/s

a). The rotational kinetic energy

K_R=\frac{1}{2}*I*w^2

I=\frac{1}{2}*m*r^2

I=\frac{1}{2}*500kg*(1.0m)^2

I=250 kg*m^2

K_R=\frac{1}{2}*250kg*m^2*(200\pi rad/s)^2

K_R=49.348x10^6J

b). The power average 0.8kW un range time can be find

P=\frac{K_R}{t'}

Solve to t'

t=\frac{K_R}{P}

t=\frac{49.348x10^6}{0.8x10^3w}=6168.5s

t=6168.5s\frac{1minute}{60s}=102.8 minutes

3 0
3 years ago
a train traveling at 30m/s comes to a complete stop in 20 sec.how far did the train go during the deceleration
elixir [45]

Answer:

600m

Explanation:

v=30m/s

t=20s

s=VT

20×30=600m

3 0
3 years ago
An object, when pushed with a net force F, has an acceleration of 4 m/s . Now twice the force is applied to an object that has f
hjlf

Answer:

B. 2 m/s

B. Acceleration = 4.05 m/s² and Tension = 297.5 N.

Explanation:

A force is applied on a mass m whose acceleration is 4 m/s

Force = mass × acceleration

a = F/m = 4 m/s

4 m/s = F/m

F = 4 m/s (m)

If  Force of 2F is applied on a mass of 4m ; it acceleration is as follows:

2F/4 m = F/ 2m

4m/s (m) / 2m = 2 m/s

a = 2 m/s

2.

Given that

mass m_1 = 30 kg

mass m_2 = 50 kg

\mu = 0.1

From the question; we can arrive at two cases;

That :

m_{2} a _ \ {net} }= m_2g - T   ----- equation (1)

m_{1} a _ \ {net} }=  T - mg sin \theta  - F ---- equation (2)

50 a = 50 g - T

30 a = T - 30 g sin 30 - 4 × 30 g cos 30

By summation

80 a =[ 50  - 30 * \frac{1}{2} - 0.1 *30* \frac{\sqrt{3}}{2}]g

80 a = 32. 4 × 10 m/s ²  (using g as 10m/s²)

80 a = 324 m/s ²

a = 324/80

a = 4.05 m/s²

From equation , replace a with 4.05

50 × 4.05 = 50 × 10 - T

T = 500 -202.5

T =297.5 N

8 0
3 years ago
An elastic conducting material is stretched into a circular loop of 9.65 cm radius. It is placed with its plane perpendicular to
Nadya [2.5K]

Answer:

The induced emf in the coil is 0.522 volts.                        

Explanation:

Given that,

Radius of the circular loop, r = 9.65 cm

It is placed with its plane perpendicular to a uniform 1.14 T magnetic field.

The radius of the loop starts to shrink at an instantaneous rate of 75.6 cm/s , \dfrac{dr}{dt}=-0.756\ m/s

Due to the shrinking of radius of the loop, an emf induced in it. It is given by :

\epsilon=\dfrac{-d\phi}{dt}\\\\\epsilon=\dfrac{-d(BA)}{dt}\\\\\epsilon=B\dfrac{-d(\pi r^2)}{dt}\\\\\epsilon=2\pi rB\dfrac{dr}{dt}\\\\\epsilon=2\pi \times 9.65\times 10^{-2}\times 1.14\times 0.756\\\\\epsilon=0.522\ V

So, the induced emf in the coil is 0.522 volts.                                

8 0
3 years ago
Other questions:
  • Why evaporation are called surface phenomenon?
    11·2 answers
  • A car from the beginning was traveling at 27.8m/s when he stepped on the brakes and stopped. According to the DMV, this would le
    8·1 answer
  • Why is the sky blue?
    12·1 answer
  • A rugby player runs with the ball directly toward his opponent's goal, along the positive direction of an x axis. He can legally
    9·1 answer
  • a two eyed minion homozygous is married to a one eyed minion. They have 8 children. How many of those children will have two eye
    7·1 answer
  • Two resistors, A and B, are connected in a series circuit with a battery. The resistance of A is twice that of B. Which resistor
    9·1 answer
  • Solid volumes can always be determined by the displacement method. true or false
    6·1 answer
  • Due in a few minutes plzzzz help! Will mark brainliest
    5·1 answer
  • The equation used to predict the theoretical period Ty of a simple pendulum assumes a small amplitude of oscillation. A student
    14·1 answer
  • For the galvanic cell at 298 k zn(s) 2in2 (aq)zn2 (aq) 2in (aq) eocell = 0.36 v what is the equilibrium constant, k?
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!