Answer:
For vector u, x component = 10.558 and y component =12.808
unit vector = 0.636 i+ 0.7716 j
For vector v, x component = 23.6316 and y component = -6.464
unit vector = 0.9645 i-0.2638 j
Explanation:
Let the vector u has magnitude 16.6
u makes an angle of 50.5° from x axis
So 
Vertical component 
So vector u will be u = 10.558 i+12.808 j
Unit vector 
Now in second case let vector v has a magnitude of 24.5
Making an angle with -15.3° from x axis
So horizontal component 
Vertical component 
So vector v will be 23.6316 i - 6.464 j
Unit vector of v 
So far, since you moved into the apartment until the end of this much of the story, you haven't done ANY work on the dresser yet.
I'll admit that you pushed, groaned and grunted, sweated and strained plenty. You're physically and mentally exhausted, you're not interested in the dresser at the moment, and right now you just want to snappa cappa brew, crash on the couch, and watch cartoons on TV. But if you've done your Physics homework, you know you haven't technically done any <u><em>work</em></u> yet.
In Physics, "Work" is the product of Force times Distance.
Since the dresser hasn't budged yet, the Distahce is zero. So no matter how great the Force may be, it's multiplied by zero, so the <em>Work is zero</em>.
It would result in stiffness and pain. Additional stress would be put onto the joints as well. Hope this helps, cheers!
Answer: +2.10V
Explanation:

Using Nernst equation :

![E_{cell}=E^o_{cell}-\frac{0.059}{n}\log [Al^{3+}]^2\times [I^-]^6](https://tex.z-dn.net/?f=E_%7Bcell%7D%3DE%5Eo_%7Bcell%7D-%5Cfrac%7B0.059%7D%7Bn%7D%5Clog%20%5BAl%5E%7B3%2B%7D%5D%5E2%5Ctimes%20%5BI%5E-%5D%5E6)
where,
= standard emf for the cell = +2.20 V
n = number of electrons in oxidation-reduction reaction = 6
= emf of the cell = ?
= concentration = 
= concentration = 
Now put all the given values in the above equation, we get:
![E_{cell}=+2.20-\frac{0.059}{6}\log [5.0\times 10^{-3}]^2\times [0.10]^6](https://tex.z-dn.net/?f=E_%7Bcell%7D%3D%2B2.20-%5Cfrac%7B0.059%7D%7B6%7D%5Clog%20%5B5.0%5Ctimes%2010%5E%7B-3%7D%5D%5E2%5Ctimes%20%5B0.10%5D%5E6)

The standard emf for the cell using the overall cell reaction below is +2.10 V
Answer:
a) the distances are zero, Both 1st & 2nd condition
c) the torques are equal but of the opposite sign, 2nd condition of equilibrium
Explanation:
The equilibrium conditions are
1 translational
∑ F = 0
2 rotational
∑ τ = Σ (F_i x r_i) = 0
They tell us that external torque is zero.
Therefore we have two various possibilities
a) the distances are zero, in this case we have a pure translation movement
for this situation the two equilibrium relations are fulfilled
b) the forces are zero, there is no movement
It does not make sense to use the equilibrium relations since there are no forces
c) the torques are equal but of the opposite sign, the forces are on the opposite side of the body.
In this case the 2 equilibrium relation is fulfilled, but not the first one that the force has the same direction