Answer:
a) 93.852 kN
b) 128.043 mm
Explanation:
Stress is load over section:
σ = P / A
If plastic deformation begins with a stress of 297 MPa, the maximum load before plastic deformation will be:
P = σ * A
316 mm^2 = 3.16*10^-4
P = 297*10^6 * 3.16*10^-4 = 93852 N = 93.852 kN
The stiffness of the specimen is:
k = E * A / l
k = 113*10^9 * 3.16*10^-4 / 0.128 = 279 MN/m
Hooke's law:
x' = x0 * (1 + P/k)
x' = 0.128 * (1 + 93.852*10^3 / 279*10^6) = 0.128043 m = 128.043 mm
Answer:
some connecting rods have spit holes
Answer:
Bending stress at point 3.96 is \sigma_b = 1.37 psi
Explanation:
Given data:
Bending Moment M is 4.176 ft-lb = 50.12 in- lb
moment of inertia I = 144 inc^4
y = 3.96 in

putting all value to get bending stress

Bending stress at point 3.96 is
= 1.37 psi
Answer:
The steady-state temperature difference is 2.42 K
Explanation:
Rate of heat transfer = kA∆T/t
Rate of heat transfer = 6 W
k is the heat transfer coefficient = 152 W/m.K
A is the area of the square silicon = width^2 = (7/1000)^2 = 4.9×10^-5 m^2
t is the thickness of the silicon = 3 mm = 3/1000 = 0.003 m
6 = 152×4.9×10^-5×∆T/0.003
∆T = 6×0.003/152×4.9×10^-5 = 2.42 K