Answer:
1 mole of C2H6.
Explanation:
The balanced equation for the reaction is given below:
2C2H6 + 7O2 —> 4CO2 + 6H2O
We can determine the number of mole of C2H6 that reacted to produce 2 moles of CO2 as follow:
From the balanced equation above,
2 moles of C2H6 reacted to produce 4 moles of CO2.
Therefore, Xmol of C2H6 will react to produce 2 moles of CO2 i.e
Xmol of CO2 = (2 x 2)/4
Xmol of CO2 = 1 mole.
Therefore, 1 mole of C2H6 is required to produce 2 moles of CO2.
Answer:
2.14 moles of H₂O₂ are required
Explanation:
Given data:
Number of moles of H₂O₂ required = ?
Number of moles of N₂H₄ available = 1.07 mol
Solution:
Chemical equation:
N₂H₄ + 2H₂O₂ → N₂ + 4H₂O
now we will compare the moles of H₂O₂ and N₂H₄
N₂H₄ : H₂O₂
1 : 2
1.07 : 2×1.07 = 2.14 mol
Answer:
Option D. Al is above H on the activity series.
Explanation:
The equation for the reaction is given below:
2Al + 6HBr —> 2AlBr₃ + 3H₂
The activity series gives us a background understanding of the reactivity of elements i.e how elements displace other elements when present in solution.
From the activity series of metals, we understood that metal higher in the series will displace those lower in the series.
Considering the equation given above, Al is higher than H in the activity series. Thus, the reaction will proceed as illustrated by the equation.
Therefore, we can conclude that the reaction will only occur if Al is higher than H in the activity series.
So,
Formate has a resonating double bond.
In molecular orbital theory, the resonating electrons are actually delocalized and are shared between the two oxygens. So the carbon-oxygen bonds can be described as 1.5-bonds (option B). I'm not sure if option C is correct, however, because the likelihood of both delocalized electrons being in the area of one oxygen atom is less than 50%.<span />
answer:
the student <u>who</u> answers the riddle will get the prize
explanation:
- who is the pronoun
- a pronoun is something that substitutes for a noun