Answer:
2.5 × 10⁻⁵ M H₃O⁺ and 4.0 × 10⁻¹⁰ M OH⁻.
Explanation:
<em>∵ pH = - log[H₃O⁺]</em>
∴ 4.6 = - log[H₃O⁺].
∴ log[H₃O⁺] = - 4.6.
∴ [H₃O⁺] = 2.51 x 10⁻⁵.
∵ [H₃O⁺][OH⁻] = 10⁻¹⁴.
[H₃O⁺] = 2.51 x 10⁻⁵ M.
∴ [OH⁻] = 10⁻¹⁴/[H₃O⁺] = 10⁻¹⁴/(2.51 x 10⁻⁵ M) = 3.98 × 10⁻¹⁰ M ≅ 4.0 × 10⁻¹⁰ M.
<em>So, the right choice is: 2.5 × 10⁻⁵ M H₃O⁺ and 4.0 × 10⁻¹⁰ M OH⁻.</em>
Answer:
Coating a material with metal
(SInce the glasses will be coated with gold.)
Answer:
One extraction: 50%
Two extractions: 75%
Three extractions: 87.5%
Four extractions: 93.75%
Explanation:
The following equation relates the fraction q of the compound left in volume V₁ of phase 1 that is extracted n times with volume V₂.
qⁿ = (V₁/(V₁ + KV₂))ⁿ
We also know that V₂ = 1/2(V₁) and K = 2, so these expressions can be substituted into the above equation:
qⁿ = (V₁/(V₁ + 2(1/2V₁))ⁿ = (V₁/(V₁ + V₁))ⁿ = (V₁/(2V₁))ⁿ = (1/2)ⁿ
When n = 1, q = 1/2, so the fraction removed from phase 1 is also 1/2, or 50%.
When n = 2, q = (1/2)² = 1/4, so the fraction removed from phase 1 is (1 - 1/4) = 3/4 or 75%.
When n = 3, q = (1/2)³ = 1/8, so the fraction removed from phase 1 is (1 - 1/8) = 7/8 or 87.5%.
When n = 4, q = (1/2)⁴ = 1/16, so the fraction removed from phase 1 is (1 - 1/16) = 15/16 or 93.75%.
Group 7a would have an ion charge of -1 because it has 7 valence electrons and it wants to gain one more electron(which is negative) to have a full shell of 8
Answer:
Cold
Explanation:
Because 0°C And below or 32°F Refers To Cold Weather