Answer is: because weak acids do not dissociate completely.
The strength of an Arrhenius
acid determines percentage of ionization of acid and the number of H⁺ ions formed. <span>
Strong acids completely ionize in water and give large amount ofhydrogen ions (H</span>⁺), so we use only one arrow, because reaction goes in one direction and there no molecules of acid in solution.
For example hydrochloric acid: HCl(aq) → H⁺(aq) + Cl⁻(aq).
<span>
Weak acid partially ionize in water
and give only a few hydrogen ions (H</span>⁺), in the solution there molecules of acid and ions.
For example cyanide acid: HCN(aq) ⇄ H⁺(aq)
+ CN⁻(aq).
Given :
Mass of oxygen containing carbon monoxide (CO) is 2.666 gram .
To Find :
How many grams of carbon (C) would be present in carbon monoxide (CO) that contains 2.666 grams of oxygen (O) .
Solution :
By law of constant composition , a given chemical compound always contains its component elements in fixed ratio (by mass) and does not depend on its source and method of preparation.
So , volume of solution does not matter .
Moles of oxygen ,
.
Now , molecule of CO contains 1 mole of C .
So , moles of C is also 0.167 mole .
Mass of carbon ,
.
Therefore , mass of carbon is 2 grams .
Hence , this is the required solution .
Because of the crystal structure of the ice, ice has lower density than liquid water. So the volume of the ice of same mass is greater than water. When melting, the volume will decrease.
Answer:
286.55K
Explanation:
To convert to kelvin , add 237 .15

Dipyrithione is a chemical with formula, C₁₀H₈N₂O₂S₂. This means that each molecule of the substance has two (2) atoms of nitrogen. By using the dimensional analysis and Avogadro's number, equal to 6.022 x 10²³, we calculate for the answer as shown below.
n = (8.2 x 10²⁴ atoms N)(1 molecule dipyrithione/ 2 atoms of N)(1 mole dipyrithione/ 6.022 x 10²³ molecules dipyrithione)
Simplifying,
n = 6.8 moles dipyrithione
<em>ANSWER: 6.8 moles</em>