When baking powder is added to a cake, the acid base reaction it undergoes with the acidic butter produces the carbon dioxide that makes the cake rise.
Answer:
addition polymerization
Explanation:
In addition polymerization, the monomers are simply joined to each other to form a polymer having the same empirical formula as the monomer but of higher relative molecular mass. The monomers in addition polymerization are usually simple unsaturated molecules such as alkenes.
We can deduce the reaction to be an addition polymerization because of the the attachment of n to both the unsaturated monomer and the saturated polymer without the loss of any small molecule. If it was a condensation polymerization, there would have been an accompanying loss of a small molecule such as water.
Physical because it is still H2O
Answer:
The amount of energy liberated will be 49.38 J.
Explanation:
The amount of energy liberated (gibbs free energy) can be calculated using the following equation:
ΔG° = -nFε
n: amount of moles of electrons transfered
F: Faraday's constant
ε: cell potential
20.0 g of Zn is equal to 0.30 mol.
Two electrons are transfered during the reaction.
Therefore, n = 2x0.30 ∴ n = 0.60
ΔG° = - 0.60 x 96.485 x 0.853
ΔG° = 49.38 J
Answer:

Explanation:
Group 4A contains a total of 4 electrons for each atom in their valence shell. Filling the orbital diagram, let's say, for carbon, notice that when we start with period 2, we have two elements in the s-block, that is, lithium and beryllium. They correspond to the two s electrons that belong to the valence shell of carbon.
Moving on, we have boron and carbon, the remaining 2 electrons. Now, starting with boron, we're in the p-block.
That said, looking at the second period, the electron configuration for the valence shell of a group 4A element would be:
