<u>Answer:</u> The
for the reaction is -120.9 kJ.
<u>Explanation:</u>
Hess’s law of constant heat summation states that the amount of heat absorbed or evolved in a given chemical equation remains the same whether the process occurs in one step or several steps.
According to this law, the chemical equation is treated as ordinary algebraic expressions and can be added or subtracted to yield the required equation. This means that the enthalpy change of the overall reaction is equal to the sum of the enthalpy changes of the intermediate reactions.
The given chemical reaction follows:

The intermediate balanced chemical reaction are:
(1)
(2)
( × 3)
(3)
( × 2)
The expression for enthalpy of the reaction follows:
![\Delta H^o_{rxn}=[1\times (-\Delta H_1)]+[3\times \Delta H_2]+[2\times \Delta H_3]](https://tex.z-dn.net/?f=%5CDelta%20H%5Eo_%7Brxn%7D%3D%5B1%5Ctimes%20%28-%5CDelta%20H_1%29%5D%2B%5B3%5Ctimes%20%5CDelta%20H_2%5D%2B%5B2%5Ctimes%20%5CDelta%20H_3%5D)
Putting values in above equation, we get:
![\Delta H^o_{rxn}=[(1\times -(-2026.6))+(3\times (-393.5))+(2\times (-483.5))]=-120.9kJ](https://tex.z-dn.net/?f=%5CDelta%20H%5Eo_%7Brxn%7D%3D%5B%281%5Ctimes%20-%28-2026.6%29%29%2B%283%5Ctimes%20%28-393.5%29%29%2B%282%5Ctimes%20%28-483.5%29%29%5D%3D-120.9kJ)
Hence, the
for the reaction is -120.9 kJ.
Alpha and Beta particles can be stopped by our skin. Gamma particles cannot be stopped by our skin.
I have attached the picture ot the H<span>aworth structure of glucose.
You can count in total 6 carbon atoms but only 5 are in the ring portion of the structure.
Therefore, the answer is 5.
</span>
I’m pretty sure it’s in a group (column) of the period table. Hope this helps :)))
Answer:

Explanation:
Hello!
In this case, since the combustion reaction of methanol is:

In such a way, since there is 1:3/2 mole ratio between methanol and oxygen, we can compute the moles of oxygen that are needed to burn 2.56 moles of methanol as shown below:

Best regards!