1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
maksim [4K]
3 years ago
8

I’m bored let’s text

Engineering
2 answers:
aleksandrvk [35]3 years ago
7 0

Answer:

anyways thnx for the points and have great day

Nuetrik [128]3 years ago
3 0

Answer:

<em>hi</em><em> </em><em>sa</em><em>m</em><em>e</em><em> </em><em>here</em><em>.</em><em> </em><em>hru</em><em> </em><em>btw</em>

<em>안녕하세요 모두가 잘되기를 바랍니다. 안전 유지</em>

You might be interested in
An incremental encoder is rotating at 15 rpm. On the wheel there are 40 holes. How many degrees of rotation would 1 pulse be?
elena-s [515]

Answer:

1 pulse rotate = 9 degree

Explanation:

given data

incremental encoder rotating = 15 rpm

wheel holes = 40

solution

we get here first 1 revolution time

as 15 revolution take = 60 second

so 1 revolution take = \frac{60}{15}

1 revolution take = 4 seconds

and

40 pulse are there for 1 revolution

40 pulse for 360 degree

so 1 pulse rotate is = \frac{360}{40}

1 pulse rotate = 9 degree

3 0
3 years ago
At a certain location, wind is blowing steadily at 7 m/s. Determine the mechanical energy of air per unit mass and the power gen
Kaylis [27]

Answer:

Explanation:

From the information given;

The velocity of the wind blow V = 7 m/s

The diameter of the blades  (d) = 80 m

Percentage of the overall efficiency \eta_{overall} = 30\%

The density of air \rho = 1.25 kg/km^3

Then, we can use the concept of the kinetic energy of the wind blowing to estimate the mechanic energy of air per unit mass by using the formula:

e_{mechanic} = \dfrac{mV^2}{2}

here;

m = \rho AV

= 1.25 \times \dfrac{\pi}{4}(80)^2 \times 7

= 43982.29 kg/s

∴

W = e_{mechanic} = \dfrac{mV^2}{2}

= \dfrac{43982.29 \times 7^2}{2}

= 1077566.105 \ W

\mathbf{ =1077.566 \ kW}

The actual electric power is:

W_{electric} = \eta_{overall} \times W

W_{electric} = 0.3 \times 1077.566

\mathbf{W_{electric} =323.26 \ kW}

8 0
3 years ago
In the combination of resistors above, consider the 1.50 µΩ and 0.75 µΩ. How can you classify the connection between these two r
Airida [17]

Answer: they are connected in series.

Explanation:

3 0
4 years ago
What is the hardest part of engineering?
Vikki [24]

ANSWER:

Aerospace Engineering. ...

Chemical Engineering. ...

Biomedical Engineering.

EXPLANATION:

This is all i know but ... I hope this helps~

7 0
2 years ago
Can someone help me plz!!
pogonyaev
It has to do with mechanical engineering
6 0
3 years ago
Other questions:
  • The human circulatory system consists of a complex branching pipe network ranging in diameter from
    10·1 answer
  • Explain why the following acts lead to hazardous safety conditions when working with electrical equipmenta. Wearing metal ring o
    9·1 answer
  • What are the causes of kickback on a table-saw?
    13·1 answer
  • Which is the correct order for handwashing
    11·2 answers
  • A company that produces footballs uses a proprietary mixture of ideal gases to inflate their footballs. If the temperature of 23
    11·1 answer
  • A refrigerator operates on average for 10.0 hours an day. If the power rating is the refrigerator is 709 w how much electrical e
    13·1 answer
  • 1) A cylinder has a volume of 20 cubic feet. What is that volume in cubic inches? (1 ft = 12 in) ​
    8·1 answer
  • What did Brother Guy say when he was showing all the pictures of scientists? (the basic point he was making)
    6·2 answers
  • The reversible and adiabatic process of a substance in a compressor begins with enthalpy equal to 1,350 kJ/kg, and ends with ent
    15·1 answer
  • Which - type of service shop is least likely to provide service to all
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!