Answer:
THE MOLAR MASS OF THE UNKNOWN MOLECULAR SUBSTANCE IS 200 G/MOL.
Explanation:
Mass of the unknown substance = 0.50 g
Freezing point of the solution = 3.9 °C
Freezing point of pure benzene = 5.5 °C
Freezing point dissociation constant Kf = 5.12°C/m
First, calculate the temperature difference between the freezing point of pure benzene and the final solution freezing point.
Change in temperature = 5.5 -3.9 = 1.6 °C
Next is to calculate the number of moles or molarity of the compound that dissolved.
Using the formula:
Δt = i Kf m
Assume i = 1
So,
1.6 °C = 1 * 5.12 * x/ 0.005 kg of benzene
x = 1.6 * 0.008 / 5.12
x = 0.0128 / 5.12
x = 0.0025 moles.
Next is to calculate the molar mass using the formula, molarity = mass / molar mass
Molar mass = mass / molarity
Molar mass = 0.50 g /0.0025
Molar mass = 200 g/mol
Hence, the molar mass of the unknown compound is 200 g/mol
Answer:
1 mole of aluminum must contain 6.022⋅1023 atoms of aluminium → this is known as Avogadro's constant.
Explanation:
Answer:0.286M
Explanation:
10.7g / 149.89g/mol×0.25L
Given :
A 250 ml beaker weighs 13.473 g .
The same beaker plus 2.2 ml of water weighs 15.346 g.
To Find :
How much does the 2.2 ml of water, alone, weigh .
Solution :
Now, mass of water is given by :

Therefore , mass of 2.2 ml of water alone is 1.873 g .
Hence , this is the required solution .
Answer:
Molality of the solution = 0.7294 M
Explanation:
Given:
Number of magnesium arsenate = 1.24 moles
Mass of solution = 1.74 kg
Find:
Molality of the solution
Computation:
Molality of the solution = Mole of solute / Mass of solution = 1.74 kg
Molality of the solution = 1.24 / 1.7
Molality of the solution = 0.7294 M