Answer:
a) 0.167 μC/m^2
b) 1.887 * 10^4 V/m
Explanation:
Hello!
First let's find the surface charge density:
a)
Since thesatellite is metallic, the accumalted charge will be uniformly distribuited on its surface. Therefore the charge density σ will be:
σ = Q/A
Where A is the area of the satellite, which is:
A=4πr^2 = πd^2 = π(1.9m)^2
Therefore:
σ = (1.9)/(π (1.9)^2) μC/m^2 = 0.167 μC/m^2
Now let's calculate the electric field
b)
Just outside the surface of the satellite the elctric field will be:
E = σ/ε0
Where ε0=8.85×10^−12 C/Vm
Therefore:
E = (0.167*10^-6 C/m^2) / (8.85*10^-12 C/Vm) = 0.01887 *10^6 V/m
E = 1.887 * 10^4 V/m
To solve the exercise it is necessary to take into account the definition of speed as a function of distance and time, and the speed of air in the sound, as well

Where,
V= Velocity
d= distance
t = time
Re-arrange the equation to find the distance we have,
d=vt
Replacing with our values


It is understood that the sound comes and goes across the entire lake therefore, the length of the lake is half the distance found, that is



Therefore the length of the lake is 634,55m
Answer:
1.81 x 10^-4 m/s
Explanation:
M = 98700 kg
m = 780 kg
d = 201 m
Let the speed of second asteroid is v.
The gravitational force between the two asteroids is balanced by the centripetal force on the second asteroid.


Where, G be the universal gravitational constant.
G = 6.67 x 10^-11 Nm^2/kg^2

v = 1.81 x 10^-4 m/s
Answer:
I think it is television and radio wave
Answer: direction
Explanation:
Given
The resultant vector of a force gives us information regarding the direction of the resultant force.
If there are multiple forces acted in a different direction then, the resultant vector describes the direction of the resultant force.