Answer:
5miles North
Explanation:
The displacement to the store is 5miles northward.
Displacement is the distance traveled in a specific direction. Displacement is a vector quantity.
A vector has both magnitude and direction.
The magnitude is the amount of that quantity
The direction is its orientation from a reference.
Therefore, the displacement is 5miles north
Gravitational potential energy can be calculated using the formula:

Where:
PEgrav = Gravitational potential energy
m= mass
g = acceleration due to gravity
h = height
On Earth acceleration due to gravity is a constant 9.8 but since the scenario is on Mars, the pull of gravity is different. In this case, it is 3.7, so we will use that for g.
So put in what you know and solve for what you don't know.
m = 10kg
g = 3.7m/s^2
h = 1m
So we put that in and solve it.


<span>Unsafe passes are passes with restricted line of sight, passes with cross traffic, narrow passes which are unsafe.
Several collision can result from making unsafe passes. Some of them are:
-getting run off the road
-getting sideswiped
-getting hit head-on</span>
Answer:
83.6°
Explanation:
For the ray to be totally internally reflected, at the boundary, the angle of refraction is 90. Using the law of refraction where
n₁sinθ₁ = n₂sinθ₂ where n₁ = refractive index of prism = 1.5, θ₁ = critical angle in prism, n₂ = refractive index of air = 1 and θ₂ = refractive angle = 90°.
So, substituting these values into the equation,
n₁sinθ₁ = n₂sinθ₂
1.5 × sinθ₁ = 1 × sin90
1.5 × sinθ₁ = 1
sinθ₁ = 1/1.5
sinθ₁ = 0.6667
θ₁ = sin*(0.6667)
θ₁ = 41.8°
So, for total internal reflection, an incidence angle of 41.8° is required. So, a full convergence angle of 2 × 41.8° = 83.6° is required for the whole bundle of rays.
Answer:
The magnitude of the force required to bring the mass to rest is 15 N.
Explanation:
Given;
mass, m = 3 .00 kg
initial speed of the mass, u = 25 m/s
distance traveled by the mass, d = 62.5 m
The acceleration of the mass is given as;
v² = u² + 2ad
at the maximum distance of 62.5 m, the final velocity of the mass = 0
0 = u² + 2ad
-2ad = u²
-a = u²/2d
-a = (25)² / (2 x 62.5)
-a = 5
a = -5 m/s²
the magnitude of the acceleration = 5 m/s²
Apply Newton's second law of motion;
F = ma
F = 3 x 5
F = 15 N
Therefore, the magnitude of the force required to bring the mass to rest is 15 N.