1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Novay_Z [31]
2 years ago
15

The instant before a batter hits a 0.14-kilogram baseball, the velocity of the ball is 45 meters per second west. The instant af

ter the batter hits the ball, the ball's velocity is 35 meters per second east. The bat and ball are in contact for 1.0 x 10-2 second.
1. find the magnitude and direction of the average acceleration of the baseball while it is in contact with the bat.
2. calculate the magnitude of the average force the Bat exerts on the ball while they are in contact. ​
Physics
1 answer:
NemiM [27]2 years ago
4 0

(1) The magnitude and direction of the average acceleration of the baseball while it is in contact with the bat is 8,000 m/s² east.

(2) The magnitude of the average force the Bat exerts on the ball while they are in contact is 1,120 N.

The given parameters:

  • <em>Mass of the baseball, m = 0.14 kg</em>
  • <em>Initial velocity of the baseball, u = 45 m/s west (negative direction)</em>
  • <em>Final velocity of the baseball, v = 35 m/s east (positive direction)</em>
  • <em>Time of contact, t = 0.01 s</em>

The magnitude and direction of the average acceleration of the baseball while it is in contact with the bat is calculated as follows:

a = \frac{v- u}{t} \\\\a = \frac{35 - (-45)}{0.01} \\\\a = \frac{80}{0.01} \\\\a = 8,000 \ m/s^2

The magnitude of the average force the Bat exerts on the ball while they are in contact is calculated as follows;

F = ma\\\\F = 0.14 \times 8,000\\\\F = 1,120 \ N

Learn more about average force here: brainly.com/question/16200276

You might be interested in
P-weight blocks D and E are connected by the rope which passes through pulley B and are supported by the isorectangular prism ar
creativ13 [48]

Answer:

21.8°

Explanation:

Let's call θ the angle between BC and the horizontal.

Draw a free body diagram for each block.

There are 4 forces acting on block D:

Weight force P pulling down,

Normal force N₁ pushing perpendicular to AB,

Friction force N₁μ pushing parallel up AB,

and tension force T pushing parallel up AB.

There are 4 forces acting on block E:

Weight force P pulling down,

Normal force N₂ pushing perpendicular to BC,

Friction force N₂μ pushing parallel to BC,

and tension force T pulling parallel to BC.

Sum of forces on D in the perpendicular direction:

∑F = ma

N₁ − P sin θ = 0

N₁ = P sin θ

Sum of forces on D in the parallel direction:

∑F = ma

T + N₁μ − P cos θ = 0

T = P cos θ − N₁μ

T = P cos θ − P sin θ μ

T = P (cos θ − sin θ μ)

Sum of forces on E in the perpendicular direction:

∑F = ma

N₂ − P cos θ = 0

N₂ = P cos θ

Sum of forces on E in the parallel direction:

∑F = ma

N₂μ + P sin θ − T = 0

T = N₂μ + P sin θ

T = P cos θ μ + P sin θ

T = P (cos θ μ + sin θ)

Set equal:

P (cos θ − sin θ μ) = P (cos θ μ + sin θ)

cos θ − sin θ μ = cos θ μ + sin θ

1 − tan θ μ = μ + tan θ

1 − μ = tan θ μ + tan θ

1 − μ = tan θ (μ + 1)

tan θ = (1 − μ) / (1 + μ)

Plug in values:

tan θ = (1 − 0.4) / (1 + 0.4)

θ = 23.2°

∠BCA = 45°, so the angle of AC relative to the horizontal is 45° − 23.2° = 21.8°.

3 0
4 years ago
If 1495 j of heat is needed to raise the temperature of a 351 g sample of a metal from 55.0°c to 66.0°c, what is the specific he
forsale [732]
The amount of heat needed to increase the temperature of a substance by \Delta T is given by
Q= mC_s \Delta T
where m is the mass of the substance, Cs is its specific heat capacity and \Delta T is the increase of temperature.

If we re-arrange the formula, we get
C_s =  \frac{Q}{m \Delta T}
And if we plug the data of the problem into the equation, we can find the specific heat capacity of the substance:
C_s =  \frac{1495 J}{(351 g)(66.0^{\circ}C-55.0^{\circ}C)}=0.39 J/g^{\circ}C
6 0
4 years ago
Read 2 more answers
iron ball weight 400 gram inside water when it is completely impressed in water 53 gram water is displaced what will be the weig
Alika [10]

Answer:

453 gm

Explanation:

<u>Immersed </u>objects are buoyed up by force equal to mass of displaced liquid

400 + 53 = 453 gm  in air

8 0
2 years ago
A ticker timer makes 50 dots per second. When a body is pulled by a tap through the timer, the distance between the third and fo
fenix001 [56]

Answer:

The acceleration is 1 cm/s^2.

Explanation:

The acceleration is defined as the rate of change of velocity.

Here, initial velocity, u = 3/1 = 3 cm/s

final velocity, v = 4/1 = 4 cm/s

time, t = 1 s

Let the acceleration is a.  

Use first equation of motion

v =  u + at

4 = 3 + 1 x a

a = 1 cm/s^2

8 0
3 years ago
Find the configuration of any tow​
Yuki888 [10]

Answer:

<h2>Ok I choose Copper and Zinc , Here is your answer⤴️⤴️</h2><h3>Hope it's helpful for you mark me as brainlist please</h3>

6 0
3 years ago
Other questions:
  • A student is hit with a 1 kg pumpkin pie. The kinetic energy of the pie 32 J. What was the speed of the pie?
    12·1 answer
  • What is gravity? I need help.
    14·2 answers
  • The density of mercury is 13.6 g/ml. what is its density in lbs/L
    11·1 answer
  • 9. If you leave a paperclip stuck to a magnet long enough, the paperclip can become magnetic. Explain how this happens. Include
    9·1 answer
  • A frequently quoted rule of thumb in aircraft design is that wings should produce about 1000 n of lift per square meter of wing.
    8·1 answer
  • 40 POINTS!!! PLEASE HELPP!!!
    5·2 answers
  • PLEASE HELP I WILL GUVE BRAINLY
    14·1 answer
  • Calculate the moment of 3kg and 20cm away from the pivot​
    8·1 answer
  • A spring with constant 559 N/m is 0.14 meters long when not stretched or compressed. You compress the spring until it is 0.07 me
    7·1 answer
  • The SI system uses three base units. Is this true or false?
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!