Answer:
10.2 m
Explanation:
The position of the dark fringes (destructive interference) formed on a distant screen in the interference pattern produced by diffraction from a single slit are given by the formula:

where
y is the position of the m-th minimum
m is the order of the minimum
D is the distance of the screen from the slit
d is the width of the slit
is the wavelength of the light used
In this problem we have:
is the wavelength of the light
is the width of the slit
m = 13 is the order of the minimum
is the distance of the 13th dark fringe from the central maximum
Solving for D, we find the distance of the screen from the slit:

The cornea is responsible of refraction light 1/3 in eye.
<h3>What is the function of the cornea?</h3>
In addition to the protective function, it plays a fundamental role in the formation of vision. Transparent, it works like a lens over the iris, focusing light from the pupil towards the retina.
Normally, the cornea and lens deflect (refract) incoming light rays, focusing them on the retina. The shape of the cornea is fixed, but the lens changes shape to focus on objects at different distances from the eye.
See more about cornea at brainly.com/question/2297282
#SPJ12
Camels have friction reduced on their feet making it easier to walk.
Answer:
Kinetic energy of bigger rock will be more than that of smaller one.
Explanation:
Kinetic energy of the rock is given by,
Kinetic energy = 
As velocity of both the rocks are same. Thus, kinetic energy is directly proportional to the mass of the rock
Kinetic energy ∝ mass
So, For greater mass kinetic energy will be greater and for smaller mass kinetic energy will be smaller.
Hence, Kinetic energy of bigger rock will be more than that of smaller one.